Nuprl Lemma : meq-rn-prod-metric
∀[k:ℕ]. ∀[x,y:ℝ^k].  uiff(x ≡ y;req-vec(k;x;y))
Proof
Definitions occuring in Statement : 
rn-prod-metric: rn-prod-metric(n)
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
meq: x ≡ y
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
req_int_terms: t1 ≡ t2
, 
absval: |i|
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
squash: ↓T
, 
less_than: a < b
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
implies: P 
⇒ Q
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
req-vec: req-vec(n;x;y)
, 
top: Top
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
mdist: mdist(d;x;y)
, 
meq: x ≡ y
Lemmas referenced : 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
req-iff-rsub-is-0, 
rabs-int, 
req_transitivity, 
req_weakening, 
rsub_functionality, 
rabs_functionality, 
req_functionality, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
req-int, 
rabs-difference-is-zero, 
subtract-add-cancel, 
istype-nat, 
real-vec_wf, 
zero-rleq-rabs, 
rsum-of-nonneg-zero-iff, 
rsum_wf, 
iff_weakening_uiff, 
int-to-real_wf, 
istype-less_than, 
istype-le, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermSubtract_wf, 
itermAdd_wf, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
rsub_wf, 
rabs_wf, 
req_wf, 
subtract_wf, 
req_witness, 
int_seg_wf, 
istype-void, 
mdist-rn-prod-metric
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
minusEquality, 
isectIsTypeImplies, 
independent_pairEquality, 
promote_hyp, 
functionEquality, 
because_Cache, 
productIsType, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
imageElimination, 
productElimination, 
dependent_set_memberEquality_alt, 
addEquality, 
functionIsType, 
inhabitedIsType, 
functionIsTypeImplies, 
independent_functionElimination, 
applyEquality, 
dependent_functionElimination, 
lambdaEquality_alt, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
universeIsType, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
independent_pairFormation, 
hypothesis, 
voidElimination, 
isect_memberEquality_alt, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}k].    uiff(x  \mequiv{}  y;req-vec(k;x;y))
Date html generated:
2019_10_30-AM-08_34_31
Last ObjectModification:
2019_10_27-PM-04_57_17
Theory : reals
Home
Index