Nuprl Lemma : meq-rn-prod-metric

[k:ℕ]. ∀[x,y:ℝ^k].  uiff(x ≡ y;req-vec(k;x;y))


Proof




Definitions occuring in Statement :  rn-prod-metric: rn-prod-metric(n) req-vec: req-vec(n;x;y) real-vec: ^n meq: x ≡ y nat: uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  req_int_terms: t1 ≡ t2 absval: |i| rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s] so_lambda: λ2x.t[x] prop: false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} implies:  Q real-vec: ^n nat: all: x:A. B[x] uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) req-vec: req-vec(n;x;y) top: Top member: t ∈ T uall: [x:A]. B[x] mdist: mdist(d;x;y) meq: x ≡ y
Lemmas referenced :  real_term_value_const_lemma real_term_value_var_lemma real_term_value_sub_lemma real_polynomial_null req-iff-rsub-is-0 rabs-int req_transitivity req_weakening rsub_functionality rabs_functionality req_functionality int_formula_prop_eq_lemma intformeq_wf decidable__equal_int req-int rabs-difference-is-zero subtract-add-cancel istype-nat real-vec_wf zero-rleq-rabs rsum-of-nonneg-zero-iff rsum_wf iff_weakening_uiff int-to-real_wf istype-less_than istype-le int_term_value_subtract_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermSubtract_wf itermAdd_wf intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties rsub_wf rabs_wf req_wf subtract_wf req_witness int_seg_wf istype-void mdist-rn-prod-metric
Rules used in proof :  equalitySymmetry equalityTransitivity minusEquality isectIsTypeImplies independent_pairEquality promote_hyp functionEquality because_Cache productIsType int_eqEquality dependent_pairFormation_alt approximateComputation independent_isectElimination unionElimination imageElimination productElimination dependent_set_memberEquality_alt addEquality functionIsType inhabitedIsType functionIsTypeImplies independent_functionElimination applyEquality dependent_functionElimination lambdaEquality_alt hypothesisEquality rename setElimination natural_numberEquality universeIsType lambdaFormation_alt isect_memberFormation_alt independent_pairFormation hypothesis voidElimination isect_memberEquality_alt thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}k].    uiff(x  \mequiv{}  y;req-vec(k;x;y))



Date html generated: 2019_10_30-AM-08_34_31
Last ObjectModification: 2019_10_27-PM-04_57_17

Theory : reals


Home Index