Nuprl Lemma : closed-interval-connected
∀u,v:ℝ.  Connected({x:ℝ| x ∈ [u, v]} )
Proof
Definitions occuring in Statement : 
connected: Connected(X)
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
connected: Connected(X)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
top: Top
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
Lemmas referenced : 
reals-connected, 
member_rccint_lemma, 
sq_stable__rleq, 
rleq_transitivity, 
all_wf, 
real_wf, 
i-member_wf, 
rccint_wf, 
or_wf, 
exists_wf, 
req_wf, 
set_wf, 
interval-retraction_wf, 
req_weakening, 
sq_stable__req, 
interval-retraction_functionality, 
interval-retraction-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isect_memberFormation, 
productElimination, 
thin, 
sqequalRule, 
independent_pairFormation, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
setElimination, 
rename, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
independent_isectElimination, 
setEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
functionEquality, 
universeEquality, 
cumulativity, 
dependent_pairFormation, 
productEquality
Latex:
\mforall{}u,v:\mBbbR{}.    Connected(\{x:\mBbbR{}|  x  \mmember{}  [u,  v]\}  )
Date html generated:
2017_10_03-AM-10_11_59
Last ObjectModification:
2017_07_10-PM-05_32_02
Theory : reals
Home
Index