Nuprl Lemma : closed-interval-connected

u,v:ℝ.  Connected({x:ℝx ∈ [u, v]} )


Proof




Definitions occuring in Statement :  connected: Connected(X) rccint: [l, u] i-member: r ∈ I real: all: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] connected: Connected(X) uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] i-member: r ∈ I rccint: [l, u] and: P ∧ Q member: t ∈ T top: Top sq_stable: SqStable(P) squash: T guard: {T} uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B or: P ∨ Q
Lemmas referenced :  reals-connected member_rccint_lemma sq_stable__rleq rleq_transitivity all_wf real_wf i-member_wf rccint_wf or_wf exists_wf req_wf set_wf interval-retraction_wf req_weakening sq_stable__req interval-retraction_functionality interval-retraction-req
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isect_memberFormation productElimination thin sqequalRule independent_pairFormation dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis setElimination rename isectElimination hypothesisEquality independent_functionElimination imageMemberEquality baseClosed imageElimination because_Cache independent_isectElimination setEquality lambdaEquality applyEquality functionExtensionality dependent_set_memberEquality functionEquality universeEquality cumulativity dependent_pairFormation productEquality

Latex:
\mforall{}u,v:\mBbbR{}.    Connected(\{x:\mBbbR{}|  x  \mmember{}  [u,  v]\}  )



Date html generated: 2017_10_03-AM-10_11_59
Last ObjectModification: 2017_07_10-PM-05_32_02

Theory : reals


Home Index