Nuprl Lemma : constant-mconverges-to

[X:Type]. ∀[d:metric(X)]. ∀[y:X].  lim n→∞.y y


Proof




Definitions occuring in Statement :  mconverges-to: lim n→∞.x[n] y metric: metric(X) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] mconverges-to: lim n→∞.x[n] y all: x:A. B[x] sq_exists: x:A [B[x]] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  istype-void istype-le istype-nat rleq_wf mdist_wf rdiv_wf int-to-real_wf rless-int nat_properties nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf nat_plus_wf metric_wf istype-universe rleq-int-fractions2 decidable__le intformle_wf itermMultiply_wf int_formula_prop_le_lemma int_term_value_mul_lemma rleq_functionality mdist-same req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt dependent_set_memberFormation_alt dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation sqequalRule sqequalHypSubstitution voidElimination cut introduction extract_by_obid hypothesis isectElimination thin hypothesisEquality setElimination rename functionIsType because_Cache universeIsType closedConclusion independent_isectElimination inrFormation_alt dependent_functionElimination productElimination independent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt instantiate universeEquality multiplyEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[y:X].    lim  n\mrightarrow{}\minfty{}.y  =  y



Date html generated: 2019_10_30-AM-06_38_46
Last ObjectModification: 2019_10_02-AM-10_51_43

Theory : reals


Home Index