Nuprl Lemma : cosine-exists-ext1
∀x:ℝ. {a:ℝ| Σi.-1^i * (x^2 * i)/(2 * i)! = a} 
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a
, 
rnexp: x^k1
, 
int-rdiv: (a)/k1
, 
int-rmul: k1 * a
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
multiply: n * m
, 
minus: -n
, 
natural_number: $n
, 
fastexp: i^n
, 
fact: (n)!
Definitions unfolded in proof : 
decidable__int_equal, 
decidable__equal_int, 
fact-greater-exp, 
expfact-property, 
rdiv-factorial-limit-zero, 
subsequence-converges, 
accelerate: accelerate(k;f)
, 
req_functionality, 
rleq_functionality, 
rmul_preserves_rleq, 
r-archimedean, 
r-archimedean-rabs, 
converges-iff-cauchy-ext, 
label: ...$L... t
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
alternating-series-converges, 
iff_weakening_equal, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
squash: ↓T
, 
or: P ∨ Q
, 
guard: {T}
, 
prop: ℙ
, 
has-value: (a)↓
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
strict4: strict4(F)
, 
uimplies: b supposing a
, 
top: Top
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
uall: ∀[x:A]. B[x]
, 
cosine-exists, 
member: t ∈ T
Lemmas referenced : 
decidable__int_equal, 
decidable__equal_int, 
fact-greater-exp, 
expfact-property, 
rdiv-factorial-limit-zero, 
subsequence-converges, 
req_functionality, 
rleq_functionality, 
rmul_preserves_rleq, 
r-archimedean, 
r-archimedean-rabs, 
converges-iff-cauchy-ext, 
alternating-series-converges, 
iff_weakening_equal, 
cosine-exists
Rules used in proof : 
decideExceptionCases, 
independent_functionElimination, 
dependent_functionElimination, 
equalityEquality, 
sqleReflexivity, 
unionElimination, 
unionEquality, 
equalitySymmetry, 
equalityTransitivity, 
callbyvalueDecide, 
because_Cache, 
inlFormation, 
exceptionSqequal, 
imageElimination, 
imageMemberEquality, 
inrFormation, 
applyExceptionCases, 
hypothesisEquality, 
closedConclusion, 
baseApply, 
callbyvalueApply, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}x:\mBbbR{}.  \{a:\mBbbR{}|  \mSigma{}i.-1\^{}i  *  (x\^{}2  *  i)/(2  *  i)!  =  a\} 
Date html generated:
2016_07_08-PM-05_55_03
Last ObjectModification:
2016_07_05-PM-03_07_28
Theory : reals
Home
Index