Nuprl Lemma : rdiv-factorial-limit-zero
∀x:ℝ. lim n→∞.(|x|^n/r((n)!)) = r0
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
rdiv: (x/y)
, 
rabs: |x|
, 
rnexp: x^k1
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
fact: (n)!
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
converges-to: lim n→∞.x[n] = y
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
so_apply: x[s]
, 
rdiv: (x/y)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
real: ℝ
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
rge: x ≥ y
, 
sq_type: SQType(T)
, 
squash: ↓T
, 
less_than: a < b
, 
subtract: n - m
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
r-archimedean-rabs, 
expfact-property, 
nat_plus_wf, 
real_wf, 
nat_plus_subtype_nat, 
le_wf, 
nat_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
rnexp_wf, 
int-to-real_wf, 
fact_wf, 
rless-int, 
nat_properties, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
rless_wf, 
rmul_wf, 
rinv_wf2, 
rleq_functionality, 
rabs_functionality, 
req_transitivity, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rinv-mul-as-rdiv, 
rinv-as-rdiv, 
rabs-of-nonneg, 
rmul-rdiv-cancel2, 
req_weakening, 
rmul-int, 
uiff_transitivity, 
less_than_wf, 
exp_wf_nat_plus, 
decidable__le, 
rmul_preserves_rleq, 
zero-rleq-rabs, 
rnexp-nonneg, 
zero-mul, 
rnexp-rleq, 
rmul-int-rdiv, 
rmul_comm, 
rnexp-int, 
exp_wf2, 
less_than'_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
rleq-int, 
rmul_preserves_rleq2, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
exp_preserves_lt, 
false_wf, 
int_term_value_mul_lemma, 
multiply-is-int-iff, 
exp_wf4, 
mul_preserves_le, 
fact-bound, 
int_term_value_subtract_lemma, 
subtract_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
add-zero, 
ge_wf, 
exp_step, 
add-associates, 
add-commutes, 
add-swap, 
mul-swap, 
le_weakening, 
le_functionality, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
fact_unroll, 
trivial-int-eq1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
dependent_set_memberFormation, 
applyEquality, 
sqequalRule, 
rename, 
isectElimination, 
setElimination, 
lambdaEquality, 
functionEquality, 
because_Cache, 
independent_isectElimination, 
inrFormation, 
independent_functionElimination, 
natural_numberEquality, 
dependent_set_memberEquality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
voidElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
multiplyEquality, 
axiomEquality, 
minusEquality, 
independent_pairEquality, 
isect_memberFormation, 
cumulativity, 
instantiate, 
imageElimination, 
baseClosed, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
addEquality, 
intWeakElimination, 
equalityElimination
Latex:
\mforall{}x:\mBbbR{}.  lim  n\mrightarrow{}\minfty{}.(|x|\^{}n/r((n)!))  =  r0
Date html generated:
2017_10_03-AM-09_27_16
Last ObjectModification:
2017_07_28-AM-07_47_13
Theory : reals
Home
Index