Nuprl Lemma : fact-bound

n:ℕ((n)! ≤ n^n)


Proof




Definitions occuring in Statement :  fact: (n)! exp: i^n nat: le: A ≤ B all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B subtype_rel: A ⊆B nat_plus: + less_than': less_than'(a;b) exp: i^n primrec: primrec(n;b;c) fact: (n)! decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  int_term_value_mul_lemma itermMultiply_wf exp_preserves_le mul_preserves_le exp_step fact_unroll_1 equal_wf int_formula_prop_eq_lemma intformeq_wf nat_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le le_wf false_wf nat_plus_wf fact_wf exp_wf2 less_than'_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename introduction intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality because_Cache applyEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality unionElimination

Latex:
\mforall{}n:\mBbbN{}.  ((n)!  \mleq{}  n\^{}n)



Date html generated: 2016_05_15-PM-04_44_50
Last ObjectModification: 2016_01_16-AM-11_24_09

Theory : general


Home Index