Nuprl Lemma : fact-greater-exp

k,n:ℕ.  ∃m:ℕk^m < (m)!


Proof




Definitions occuring in Statement :  fact: (n)! exp: i^n nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] multiply: m
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B nat_plus: + subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q subtract: m guard: {T} uiff: uiff(P;Q) sq_type: SQType(T) so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b) fact: (n)! exp: i^n iff: ⇐⇒ Q rev_implies:  Q true: True less_than: a < b squash: T
Lemmas referenced :  exp_add exp_wf_nat_plus mul_preserves_lt fact-positive mul_bounds_1a minus-zero minus-add condition-implies-le le-add-cancel add-zero add_functionality_wrt_le not-equal-2 not-lt-2 add-is-int-iff decidable__lt primrec1_lemma decidable__equal_int set_subtype_base exp_step int_subtype_base subtype_base_sq false_wf multiply-is-int-iff exp_wf4 nat_plus_subtype_nat add_nat_wf multiply_nat_wf general_arith_equation1 mul_preserves_le add-commutes zero-add one-mul zero-mul mul-associates mul-commutes mul-swap add-associates mul-distributes-right mul-distributes int_term_value_mul_lemma itermMultiply_wf nat_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf le_wf int_formula_prop_not_lemma intformnot_wf decidable__le equal_wf int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf fact_unroll_1 exp0_lemma exp_wf2 nat_plus_wf nat_plus_properties fact_wf less_than'_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename introduction intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality applyEquality because_Cache multiplyEquality addEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality unionElimination minusEquality setEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed equalityEquality instantiate cumulativity imageElimination

Latex:
\mforall{}k,n:\mBbbN{}.    \mexists{}m:\mBbbN{}.  n  *  k\^{}m  <  (m)!



Date html generated: 2016_05_15-PM-04_05_57
Last ObjectModification: 2016_01_16-AM-11_06_10

Theory : general


Home Index