Nuprl Lemma : fractions-rless
∀a,b,c,d:ℝ.  ((r0 < c) ⇒ (r0 < d) ⇒ ((a/c) < (b/d) ⇐⇒ (a * d) < (b * c)))
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rless: x < y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
guard: {T}, 
rneq: x ≠ y, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
top: Top, 
not: ¬A, 
false: False, 
req_int_terms: t1 ≡ t2, 
rdiv: (x/y), 
uiff: uiff(P;Q)
Lemmas referenced : 
real_wf, 
rmul_wf, 
int-to-real_wf, 
rdiv_wf, 
rless_wf, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
rmul-rinv, 
req_weakening, 
rmul_functionality, 
req_transitivity, 
rless_functionality, 
itermConstant_wf, 
rmul-one, 
req-iff-rsub-is-0, 
itermVar_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
rinv_wf2, 
rmul_preserves_rless
Rules used in proof : 
natural_numberEquality, 
inrFormation, 
hypothesis, 
sqequalRule, 
independent_isectElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
approximateComputation, 
because_Cache, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}a,b,c,d:\mBbbR{}.    ((r0  <  c)  {}\mRightarrow{}  (r0  <  d)  {}\mRightarrow{}  ((a/c)  <  (b/d)  \mLeftarrow{}{}\mRightarrow{}  (a  *  d)  <  (b  *  c)))
Date html generated:
2017_10_03-AM-08_38_55
Last ObjectModification:
2017_07_29-PM-08_39_25
Theory : reals
Home
Index