Nuprl Lemma : fractions-rless
∀a,b,c,d:ℝ. ((r0 < c)
⇒ (r0 < d)
⇒ ((a/c) < (b/d)
⇐⇒ (a * d) < (b * c)))
Proof
Definitions occuring in Statement :
rdiv: (x/y)
,
rless: x < y
,
rmul: a * b
,
int-to-real: r(n)
,
real: ℝ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
natural_number: $n
Definitions unfolded in proof :
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
guard: {T}
,
rneq: x ≠ y
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
top: Top
,
not: ¬A
,
false: False
,
req_int_terms: t1 ≡ t2
,
rdiv: (x/y)
,
uiff: uiff(P;Q)
Lemmas referenced :
real_wf,
rmul_wf,
int-to-real_wf,
rdiv_wf,
rless_wf,
real_term_value_const_lemma,
real_term_value_var_lemma,
real_term_value_mul_lemma,
real_term_value_sub_lemma,
real_polynomial_null,
rmul-rinv,
req_weakening,
rmul_functionality,
req_transitivity,
rless_functionality,
itermConstant_wf,
rmul-one,
req-iff-rsub-is-0,
itermVar_wf,
itermMultiply_wf,
itermSubtract_wf,
rinv_wf2,
rmul_preserves_rless
Rules used in proof :
natural_numberEquality,
inrFormation,
hypothesis,
sqequalRule,
independent_isectElimination,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
independent_pairFormation,
lambdaFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
voidEquality,
voidElimination,
isect_memberEquality,
intEquality,
int_eqEquality,
lambdaEquality,
approximateComputation,
because_Cache,
productElimination,
independent_functionElimination,
dependent_functionElimination
Latex:
\mforall{}a,b,c,d:\mBbbR{}. ((r0 < c) {}\mRightarrow{} (r0 < d) {}\mRightarrow{} ((a/c) < (b/d) \mLeftarrow{}{}\mRightarrow{} (a * d) < (b * c)))
Date html generated:
2017_10_03-AM-08_38_55
Last ObjectModification:
2017_07_29-PM-08_39_25
Theory : reals
Home
Index