Nuprl Lemma : function-on-compact

a:ℝ. ∀b:{b:ℝa ≤ b} . ∀f:[a, b] ⟶ℝ.
  ((∀x,y:{t:ℝt ∈ [a, b]} .  ((x y)  (f[x] f[y])))
   (∀n:ℕ+
        (∃d:ℝ [((r0 < d)
              ∧ (∀x,y:ℝ.  ((x ∈ [a, b])  (y ∈ [a, b])  (|x y| ≤ d)  (|f[x] f[y]| ≤ (r1/r(n))))))])))


Proof




Definitions occuring in Statement :  rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y req: y int-to-real: r(n) real: nat_plus: + so_apply: x[s] all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  rfun: I ⟶ℝ so_apply: x[s] so_lambda: λ2x.t[x] top: Top sq_stable: SqStable(P) iff: ⇐⇒ Q prop: and: P ∧ Q true: True less_than': less_than'(a;b) squash: T less_than: a < b nat_plus: + rccint: [l, u] i-approx: i-approx(I;n) continuous: f[x] continuous for x ∈ I uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  rleq_wf set_wf rfun_wf req_wf i-member_wf real_wf all_wf nat_plus_wf member_rccint_lemma icompact_wf sq_stable__rleq rccint-icompact less_than_wf rccint_wf function-is-continuous
Rules used in proof :  applyEquality functionEquality lambdaEquality setEquality voidEquality voidElimination isect_memberEquality imageElimination productElimination baseClosed imageMemberEquality independent_pairFormation natural_numberEquality dependent_set_memberEquality sqequalRule independent_functionElimination hypothesis because_Cache rename setElimination hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}
                (\mexists{}d:\mBbbR{}  [((r0  <  d)
                            \mwedge{}  (\mforall{}x,y:\mBbbR{}.
                                      ((x  \mmember{}  [a,  b])
                                      {}\mRightarrow{}  (y  \mmember{}  [a,  b])
                                      {}\mRightarrow{}  (|x  -  y|  \mleq{}  d)
                                      {}\mRightarrow{}  (|f[x]  -  f[y]|  \mleq{}  (r1/r(n))))))])))



Date html generated: 2018_07_29-AM-09_40_44
Last ObjectModification: 2018_06_22-PM-04_47_33

Theory : reals


Home Index