Nuprl Lemma : m-closed-subspace_wf

[X:Type]. ∀[d:metric(X)]. ∀[A:Type].  m-closed-subspace(X;d;A) ∈ ℙ supposing metric-subspace(X;d;A)


Proof




Definitions occuring in Statement :  m-closed-subspace: m-closed-subspace(X;d;A) metric-subspace: metric-subspace(X;d;A) metric: metric(X) uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y nat_plus: + subtype_rel: A ⊆B exists: x:A. B[x] all: x:A. B[x] m-closed-subspace: m-closed-subspace(X;d;A) implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q metric-subspace: metric-subspace(X;d;A) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_plus_properties rless-int int-to-real_wf rdiv_wf mdist_wf rleq_wf nat_plus_wf equal-wf istype-universe metric_wf metric-subspace_wf strong-subtype-iff-respects-equality
Rules used in proof :  equalityIstype independent_pairFormation voidElimination int_eqEquality lambdaEquality_alt dependent_pairFormation_alt approximateComputation unionElimination dependent_functionElimination inrFormation_alt because_Cache rename setElimination natural_numberEquality closedConclusion lambdaFormation_alt applyEquality productEquality functionEquality independent_functionElimination universeEquality instantiate inhabitedIsType isectIsTypeImplies isect_memberEquality_alt universeIsType equalitySymmetry equalityTransitivity axiomEquality sqequalRule independent_isectElimination hypothesis hypothesisEquality isectElimination extract_by_obid thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[A:Type].    m-closed-subspace(X;d;A)  \mmember{}  \mBbbP{}  supposing  metric-subspace(X;d;A)



Date html generated: 2019_10_30-AM-06_32_07
Last ObjectModification: 2019_10_23-PM-06_23_57

Theory : reals


Home Index