Nuprl Lemma : m-closed-subspace_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[A:Type].  m-closed-subspace(X;d;A) ∈ ℙ supposing metric-subspace(X;d;A)
Proof
Definitions occuring in Statement : 
m-closed-subspace: m-closed-subspace(X;d;A)
, 
metric-subspace: metric-subspace(X;d;A)
, 
metric: metric(X)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
decidable: Dec(P)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
m-closed-subspace: m-closed-subspace(X;d;A)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
metric-subspace: metric-subspace(X;d;A)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rless_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
mdist_wf, 
rleq_wf, 
nat_plus_wf, 
equal-wf, 
istype-universe, 
metric_wf, 
metric-subspace_wf, 
strong-subtype-iff-respects-equality
Rules used in proof : 
equalityIstype, 
independent_pairFormation, 
voidElimination, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
dependent_functionElimination, 
inrFormation_alt, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
closedConclusion, 
lambdaFormation_alt, 
applyEquality, 
productEquality, 
functionEquality, 
independent_functionElimination, 
universeEquality, 
instantiate, 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[A:Type].    m-closed-subspace(X;d;A)  \mmember{}  \mBbbP{}  supposing  metric-subspace(X;d;A)
Date html generated:
2019_10_30-AM-06_32_07
Last ObjectModification:
2019_10_23-PM-06_23_57
Theory : reals
Home
Index