Nuprl Lemma : mcompact_functionality
∀[X,Y:Type].  ∀d:metric(X). (mcompact(X;d) 
⇐⇒ mcompact(Y;d)) supposing X ≡ Y
Proof
Definitions occuring in Statement : 
mcompact: mcompact(X;d)
, 
metric: metric(X)
, 
ext-eq: A ≡ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
or: P ∨ Q
, 
rneq: x ≠ y
, 
nat: ℕ
, 
spreadn: spread3, 
nat_plus: ℕ+
, 
istype: istype(T)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
metric: metric(X)
, 
exists: ∃x:A. B[x]
, 
mconverges: x[n]↓ as n→∞
, 
guard: {T}
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
m-TB: m-TB(X;d)
, 
mk-metric-space: X with d
, 
mcomplete: mcomplete(M)
, 
mcompact: mcompact(X;d)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
ext-eq: A ≡ B
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rless_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
mdist_wf, 
rleq_wf, 
subtype_rel_self, 
nat_plus_wf, 
int_seg_wf, 
mcauchy_wf, 
istype-nat, 
real_wf, 
subtype_rel_dep_function, 
mconverges-to_wf, 
nat_wf, 
subtype_rel_weakening, 
ext-eq_inversion, 
metric-on-subtype, 
istype-universe, 
ext-eq_wf, 
metric_wf, 
mcompact_wf
Rules used in proof : 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
unionElimination, 
inrFormation_alt, 
addEquality, 
closedConclusion, 
productEquality, 
natural_numberEquality, 
dependent_pairEquality_alt, 
dependent_set_memberEquality_alt, 
functionIsType, 
functionEquality, 
lambdaEquality_alt, 
because_Cache, 
setElimination, 
dependent_pairFormation_alt, 
functionExtensionality, 
independent_functionElimination, 
applyEquality, 
dependent_functionElimination, 
independent_isectElimination, 
universeEquality, 
instantiate, 
inhabitedIsType, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
universeIsType, 
promote_hyp, 
independent_pairFormation, 
lambdaFormation_alt, 
rename, 
hypothesis, 
axiomEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cut
Latex:
\mforall{}[X,Y:Type].    \mforall{}d:metric(X).  (mcompact(X;d)  \mLeftarrow{}{}\mRightarrow{}  mcompact(Y;d))  supposing  X  \mequiv{}  Y
Date html generated:
2019_10_30-AM-11_21_52
Last ObjectModification:
2019_10_30-AM-10_51_48
Theory : reals
Home
Index