Nuprl Lemma : not-diverges-converges

[x:ℕ ⟶ ℝ]. (x[n]↓ as n→∞ ∧ n.x[n]↑))


Proof




Definitions occuring in Statement :  diverges: n.x[n]↑ converges: x[n]↓ as n→∞ real: nat: uall: [x:A]. B[x] so_apply: x[s] not: ¬A and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False and: P ∧ Q all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q cauchy: cauchy(n.x[n]) diverges: n.x[n]↑ exists: x:A. B[x] prop: sq_exists: x:{A| B[x]} guard: {T} nat_plus: + uimplies: supposing a rneq: x ≠ y or: P ∨ Q rev_implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  rless_irreflexivity rless_transitivity1 rsub_wf rabs_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int rdiv_wf int-to-real_wf rless_wf small-reciprocal-real real_wf diverges_wf converges_wf and_wf nat_wf converges-iff-cauchy
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution productElimination lemma_by_obid dependent_functionElimination sqequalRule lambdaEquality applyEquality hypothesisEquality hypothesis independent_functionElimination because_Cache voidElimination isectElimination functionEquality dependent_set_memberEquality natural_numberEquality setElimination rename independent_isectElimination inrFormation unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  (\mneg{}(x[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{}  \mwedge{}  n.x[n]\muparrow{}))



Date html generated: 2016_05_18-AM-07_39_29
Last ObjectModification: 2016_01_17-AM-02_04_15

Theory : reals


Home Index