Nuprl Lemma : regular-upto-regularize

f:ℕ+ ⟶ ℤ. ∀k,m:ℕ.  ((↑regular-upto(k;m 1;f))  {∀n:ℕ((n ≤ m)  (regularize(k;f) n))})


Proof




Definitions occuring in Statement :  regularize: regularize(k;f) regular-upto: regular-upto(k;n;f) nat_plus: + nat: assert: b guard: {T} le: A ≤ B all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q guard: {T} regularize: regularize(k;f) ifthenelse: if then else fi  btrue: tt member: t ∈ T prop: uall: [x:A]. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q uiff: uiff(P;Q) sq_type: SQType(T) iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  le_wf assert_wf regular-upto_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf nat_plus_wf nat_wf subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert-regular-upto int_seg_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache dependent_set_memberEquality addEquality natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation functionExtensionality applyEquality functionEquality instantiate cumulativity productElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}k,m:\mBbbN{}.    ((\muparrow{}regular-upto(k;m  +  1;f))  {}\mRightarrow{}  \{\mforall{}n:\mBbbN{}.  ((n  \mleq{}  m)  {}\mRightarrow{}  (regularize(k;f)  n  \msim{}  f  n))\})



Date html generated: 2017_10_03-AM-09_07_41
Last ObjectModification: 2017_09_11-PM-01_45_52

Theory : reals


Home Index