Nuprl Lemma : regular-upto-regularize
∀f:ℕ+ ⟶ ℤ. ∀k,m:ℕ.  ((↑regular-upto(k;m + 1;f)) 
⇒ {∀n:ℕ. ((n ≤ m) 
⇒ (regularize(k;f) n ~ f n))})
Proof
Definitions occuring in Statement : 
regularize: regularize(k;f)
, 
regular-upto: regular-upto(k;n;f)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
assert: ↑b
, 
guard: {T}
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
regularize: regularize(k;f)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
Lemmas referenced : 
le_wf, 
assert_wf, 
regular-upto_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
nat_plus_wf, 
nat_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert-regular-upto, 
int_seg_wf, 
int_seg_properties, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
functionExtensionality, 
applyEquality, 
functionEquality, 
instantiate, 
cumulativity, 
productElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}k,m:\mBbbN{}.    ((\muparrow{}regular-upto(k;m  +  1;f))  {}\mRightarrow{}  \{\mforall{}n:\mBbbN{}.  ((n  \mleq{}  m)  {}\mRightarrow{}  (regularize(k;f)  n  \msim{}  f  n))\})
Date html generated:
2017_10_03-AM-09_07_41
Last ObjectModification:
2017_09_11-PM-01_45_52
Theory : reals
Home
Index