Nuprl Lemma : rsqrt-rless-iff

x,y:{x:ℝr0 ≤ x} .  (x < ⇐⇒ rsqrt(x) < rsqrt(y))


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y rless: x < y int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True nat: le: A ≤ B false: False not: ¬A uimplies: supposing a
Lemmas referenced :  rsqrt_functionality_wrt_rless rless_wf rsqrt_wf real_wf rleq_wf int-to-real_wf req_wf rmul_wf set_wf rnexp-rless rsqrt_nonneg less_than_wf rless_functionality rnexp_wf false_wf le_wf rsqrt-rnexp-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename hypothesis independent_functionElimination isectElimination applyEquality lambdaEquality setEquality productEquality natural_numberEquality sqequalRule because_Cache dependent_set_memberEquality imageMemberEquality baseClosed independent_isectElimination productElimination

Latex:
\mforall{}x,y:\{x:\mBbbR{}|  r0  \mleq{}  x\}  .    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  rsqrt(x)  <  rsqrt(y))



Date html generated: 2018_05_22-PM-02_23_13
Last ObjectModification: 2018_03_27-PM-10_22_47

Theory : reals


Home Index