Nuprl Lemma : rsqrt_functionality_wrt_rless

x:{x:ℝr0 ≤ x} . ∀y:ℝ.  ((x < y)  (rsqrt(x) < rsqrt(y)))


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y rless: x < y int-to-real: r(n) real: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) uimplies: supposing a or: P ∨ Q rge: x ≥ y guard: {T} rless: x < y sq_exists: x:{A| B[x]} nat_plus: + less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] subtype_rel: A ⊆B rev_implies:  Q
Lemmas referenced :  rless_wf real_wf set_wf rleq_wf int-to-real_wf rmul_wf radd-preserves-rless rminus_wf radd_wf real_term_polynomial itermSubtract_wf itermAdd_wf itermMinus_wf itermMultiply_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rsub_wf rmul-is-positive rless-implies-rless itermConstant_wf rless_functionality req_transitivity radd_functionality rminus_functionality req_weakening rless_functionality_wrt_implies radd_functionality_wrt_rleq rleq_weakening_equal nat_plus_properties satisfiable-full-omega-tt intformless_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf rsqrt_functionality_wrt_rleq rsqrt_nonneg rleq_weakening_rless rless_transitivity2 req_wf rsqrt_wf rsqrt_squared
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality natural_numberEquality dependent_functionElimination productElimination independent_functionElimination because_Cache computeAll int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_isectElimination unionElimination equalityTransitivity equalitySymmetry imageElimination dependent_pairFormation productEquality setEquality applyEquality dependent_set_memberEquality

Latex:
\mforall{}x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  .  \mforall{}y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (rsqrt(x)  <  rsqrt(y)))



Date html generated: 2017_10_03-AM-10_44_11
Last ObjectModification: 2017_07_28-AM-08_19_01

Theory : reals


Home Index