Nuprl Lemma : derivative-rlog
d(rlog(x))/dx = λx.(r1/x) on (r0, ∞)
Proof
Definitions occuring in Statement :
rlog: rlog(x)
,
derivative: d(f[x])/dx = λz.g[z] on I
,
roiint: (l, ∞)
,
rdiv: (x/y)
,
int-to-real: r(n)
,
natural_number: $n
Definitions unfolded in proof :
rlog: rlog(x)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
top: Top
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rfun: I ⟶ℝ
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
sq_stable: SqStable(P)
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
derivative-of-integral,
roiint_wf,
int-to-real_wf,
member_roiint_lemma,
rless-int,
rless_wf,
rdiv_wf,
sq_stable__rless,
real_wf,
i-member_wf,
req_functionality,
rdiv_functionality,
req_weakening,
req_wf,
set_wf,
all_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isectElimination,
natural_numberEquality,
hypothesis,
isect_memberEquality,
voidElimination,
voidEquality,
productElimination,
independent_functionElimination,
independent_pairFormation,
imageMemberEquality,
hypothesisEquality,
baseClosed,
dependent_set_memberEquality,
lambdaEquality,
setElimination,
rename,
because_Cache,
independent_isectElimination,
inrFormation,
imageElimination,
setEquality,
lambdaFormation,
functionEquality,
applyEquality
Latex:
d(rlog(x))/dx = \mlambda{}x.(r1/x) on (r0, \minfty{})
Date html generated:
2016_10_26-PM-00_27_21
Last ObjectModification:
2016_09_12-PM-05_44_24
Theory : reals_2
Home
Index