Nuprl Lemma : rcos-pi
rcos(π) = -(r1)
Proof
Definitions occuring in Statement :
pi: π
,
rcos: rcos(x)
,
req: x = y
,
rminus: -(x)
,
int-to-real: r(n)
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
uiff: uiff(P;Q)
,
all: ∀x:A. B[x]
,
req_int_terms: t1 ≡ t2
,
false: False
,
not: ¬A
,
top: Top
Lemmas referenced :
rcos-shift-pi,
int-to-real_wf,
rcos_wf,
radd_wf,
pi_wf,
rminus_wf,
itermSubtract_wf,
itermAdd_wf,
itermConstant_wf,
itermVar_wf,
itermMinus_wf,
req_wf,
squash_wf,
true_wf,
real_wf,
rminus-int,
subtype_rel_self,
iff_weakening_equal,
req_functionality,
req_weakening,
rminus_functionality,
rcos0,
rcos_functionality,
req-iff-rsub-is-0,
real_polynomial_null,
istype-int,
real_term_value_sub_lemma,
istype-void,
real_term_value_add_lemma,
real_term_value_const_lemma,
real_term_value_var_lemma,
real_term_value_minus_lemma
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
natural_numberEquality,
hypothesis,
because_Cache,
minusEquality,
applyEquality,
lambdaEquality_alt,
imageElimination,
hypothesisEquality,
equalityTransitivity,
equalitySymmetry,
universeIsType,
inhabitedIsType,
sqequalRule,
imageMemberEquality,
baseClosed,
instantiate,
universeEquality,
independent_isectElimination,
productElimination,
independent_functionElimination,
dependent_functionElimination,
approximateComputation,
int_eqEquality,
isect_memberEquality_alt,
voidElimination
Latex:
rcos(\mpi{}) = -(r1)
Date html generated:
2019_10_30-AM-11_43_45
Last ObjectModification:
2019_06_10-PM-05_27_20
Theory : reals_2
Home
Index