Nuprl Lemma : rexp-approx-lemma
∀N:ℕ+. (∃k:ℕ [(N ≤ (4^k * 3 * (k)!))])
Proof
Definitions occuring in Statement : 
fact: (n)!, 
exp: i^n, 
nat_plus: ℕ+, 
nat: ℕ, 
le: A ≤ B, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
multiply: n * m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
nat_plus: ℕ+, 
so_apply: x[s], 
uimplies: b supposing a, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
subtype_rel: A ⊆r B, 
sq_exists: ∃x:A [B[x]], 
nat: ℕ
Lemmas referenced : 
genfact-inv_wf, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
nat_plus_subtype_nat, 
subtype_rel_sets_simple, 
nat_wf, 
le_wf, 
genfact_wf, 
istype-nat, 
exp_wf2, 
fact_wf, 
mul-swap, 
exp-fact-as-genfact, 
istype-le, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality_alt, 
multiplyEquality, 
closedConclusion, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
inhabitedIsType, 
hypothesisEquality, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
dependent_set_memberEquality_alt, 
imageMemberEquality, 
baseClosed, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}N:\mBbbN{}\msupplus{}.  (\mexists{}k:\mBbbN{}  [(N  \mleq{}  (4\^{}k  *  3  *  (k)!))])
Date html generated:
2019_10_30-AM-11_40_46
Last ObjectModification:
2019_02_08-PM-02_06_36
Theory : reals_2
Home
Index