Nuprl Lemma : exp-fact-as-genfact

[a,x:ℤ]. ∀[n:ℕ].  (a x^n (n)! genfact(n;a;m.x m))


Proof




Definitions occuring in Statement :  fact: (n)! genfact: genfact(n;b;m.f[m]) exp: i^n nat: uall: [x:A]. B[x] multiply: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: exp: i^n primrec: primrec(n;b;c) primtailrec: primtailrec(n;i;b;f) fact: (n)! genfact: genfact(n;b;m.f[m]) nat_plus: + decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than subtract-1-ge-0 istype-nat decidable__lt intformnot_wf int_formula_prop_not_lemma int_subtype_base nat_plus_wf subtype_base_sq lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf decidable__equal_int fact_wf subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma istype-le exp_wf2 intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma exp_step fact_unroll genfact-step iff_weakening_equal mul-one
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomSqEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :isectIsTypeImplies,  Error :dependent_set_memberEquality_alt,  because_Cache unionElimination baseApply closedConclusion baseClosed applyEquality multiplyEquality instantiate cumulativity intEquality equalityElimination equalityTransitivity equalitySymmetry productElimination Error :equalityIstype,  promote_hyp sqequalIntensionalEquality

Latex:
\mforall{}[a,x:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (a  *  x\^{}n  *  (n)!  \msim{}  genfact(n;a;m.x  *  m))



Date html generated: 2019_06_20-PM-02_30_15
Last ObjectModification: 2019_02_08-PM-02_03_51

Theory : num_thy_1


Home Index