Nuprl Lemma : rmul*_functionality
∀[x,y,u,v:ℝ*].  (x = y ⇒ u = v ⇒ x * u = y * v)
Proof
Definitions occuring in Statement : 
rmul*: x * y, 
req*: x = y, 
real*: ℝ*, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
rmul*: x * y, 
member: t ∈ T, 
prop: ℙ, 
uimplies: b supposing a, 
and: P ∧ Q, 
req*: x = y, 
exists: ∃x:A. B[x], 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
all: ∀x:A. B[x], 
rfun*2: f*(x;y), 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
real*: ℝ*, 
int_upper: {i...}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req*_wf, 
real*_wf, 
rfun*2_wf, 
rmul_wf, 
real_wf, 
req_witness, 
req_wf, 
req_weakening, 
false_wf, 
le_wf, 
int_upper_wf, 
all_wf, 
int_upper_subtype_nat, 
subtype_rel_self, 
nat_wf, 
rmul_comm, 
req*_functionality, 
rfun*2_functionality, 
req*_weakening, 
req_functionality, 
rmul_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
lambdaEquality, 
productElimination, 
sqequalRule, 
independent_functionElimination, 
productEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
setElimination, 
rename, 
applyEquality
Latex:
\mforall{}[x,y,u,v:\mBbbR{}*].    (x  =  y  {}\mRightarrow{}  u  =  v  {}\mRightarrow{}  x  *  u  =  y  *  v)
Date html generated:
2018_05_22-PM-03_16_35
Last ObjectModification:
2017_10_06-PM-03_47_15
Theory : reals_2
Home
Index