Nuprl Lemma : rsin-strictly-increasing2
rsin(x) strictly-increasing for x ∈ [-(π/2), π/2]
Proof
Definitions occuring in Statement : 
halfpi: π/2, 
rsin: rsin(x), 
strictly-increasing-on-interval: f[x] strictly-increasing for x ∈ I, 
rccint: [l, u], 
rminus: -(x)
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
rfun: I ⟶ℝ, 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
cand: A c∧ B, 
top: Top, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
rsin-strictly-increasing, 
strictly-increasing-on-closed-interval2, 
rminus_wf, 
halfpi_wf, 
rsin_wf, 
real_wf, 
i-member_wf, 
rccint_wf, 
req_functionality, 
rsin_functionality, 
req_weakening, 
req_wf, 
int-to-real_wf, 
rsin-bounds, 
member_rccint_lemma, 
istype-void, 
rleq_wf, 
squash_wf, 
true_wf, 
rminus-int, 
subtype_rel_self, 
iff_weakening_equal, 
rleq_functionality, 
req_transitivity, 
rsin-rminus, 
rminus_functionality, 
rsin-halfpi
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
setElimination, 
rename, 
hypothesisEquality, 
setIsType, 
universeIsType, 
independent_functionElimination, 
lambdaFormation_alt, 
because_Cache, 
independent_isectElimination, 
productElimination, 
independent_pairFormation, 
natural_numberEquality, 
isect_memberEquality_alt, 
voidElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality
Latex:
rsin(x)  strictly-increasing  for  x  \mmember{}  [-(\mpi{}/2),  \mpi{}/2]
Date html generated:
2019_10_30-AM-11_43_56
Last ObjectModification:
2019_05_23-AM-10_13_41
Theory : reals_2
Home
Index