Nuprl Lemma : groupoids_wf
Groupoids ∈ SmallCategory'
Proof
Definitions occuring in Statement : 
groupoids: Groupoids
, 
small-category: SmallCategory
, 
member: t ∈ T
Definitions unfolded in proof : 
groupoids: Groupoids
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v])
, 
so_apply: x[s1;s2;s3;s4;s5]
, 
uimplies: b supposing a
, 
groupoid-map: groupoid-map(G;H)
, 
all: ∀x:A. B[x]
, 
id_functor: 1
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
functor-comp: functor-comp(F;G)
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
mk-cat_wf, 
groupoid_wf, 
groupoid-map_wf, 
id_functor_wf, 
groupoid-cat_wf, 
ob_mk_functor_lemma, 
istype-void, 
arrow_mk_functor_lemma, 
groupoid-inv_wf, 
cat-arrow_wf, 
cat-ob_wf, 
functor-ob_wf, 
functor-arrow_wf, 
functor-comp_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
functor-comp-id, 
functor-comp-assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
cumulativity, 
hypothesisEquality, 
inhabitedIsType, 
universeIsType, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
lambdaFormation_alt, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
applyEquality, 
functionIsType, 
because_Cache, 
equalityIstype, 
setElimination, 
rename, 
natural_numberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
independent_pairFormation
Latex:
Groupoids  \mmember{}  SmallCategory'
Date html generated:
2019_10_31-AM-07_25_00
Last ObjectModification:
2019_05_07-PM-10_26_46
Theory : small!categories
Home
Index