Nuprl Lemma : groupoids_wf

Groupoids ∈ SmallCategory'


Proof




Definitions occuring in Statement :  groupoids: Groupoids small-category: SmallCategory member: t ∈ T
Definitions unfolded in proof :  groupoids: Groupoids uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]) so_apply: x[s1;s2;s3;s4;s5] uimplies: supposing a groupoid-map: groupoid-map(G;H) all: x:A. B[x] id_functor: 1 top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] functor-comp: functor-comp(F;G) true: True squash: T prop: subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  mk-cat_wf groupoid_wf groupoid-map_wf id_functor_wf groupoid-cat_wf ob_mk_functor_lemma istype-void arrow_mk_functor_lemma groupoid-inv_wf cat-arrow_wf cat-ob_wf functor-ob_wf functor-arrow_wf functor-comp_wf equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal functor-comp-id functor-comp-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality_alt cumulativity hypothesisEquality inhabitedIsType universeIsType independent_isectElimination dependent_set_memberEquality_alt lambdaFormation_alt dependent_functionElimination isect_memberEquality_alt voidElimination applyEquality functionIsType because_Cache equalityIstype setElimination rename natural_numberEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination independent_functionElimination independent_pairFormation

Latex:
Groupoids  \mmember{}  SmallCategory'



Date html generated: 2019_10_31-AM-07_25_00
Last ObjectModification: 2019_05_07-PM-10_26_46

Theory : small!categories


Home Index