Nuprl Lemma : op-functor_wf

[C,D:SmallCategory]. ∀[F:Functor(C;D)].  (op-functor(F) ∈ Functor(op-cat(C);op-cat(D)))


Proof




Definitions occuring in Statement :  op-functor: op-functor(F) op-cat: op-cat(C) cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} true: True prop: squash: T so_apply: x[s1;s2;s3] top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] op-functor: op-functor(F) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  op-cat-id op-cat-comp cat-id_wf functor-arrow-id iff_weakening_equal cat-comp_wf functor-arrow-comp true_wf squash_wf equal_wf small-category_wf cat-functor_wf cat-arrow_wf functor-arrow_wf op-cat-arrow cat-ob_wf subtype_rel-equal functor-ob_wf cat_ob_op_lemma op-cat_wf mk-functor_wf
Rules used in proof :  independent_functionElimination productElimination baseClosed imageMemberEquality natural_numberEquality universeEquality imageElimination lambdaFormation equalitySymmetry equalityTransitivity axiomEquality voidEquality voidElimination isect_memberEquality because_Cache independent_isectElimination applyEquality dependent_functionElimination lambdaEquality sqequalRule hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].    (op-functor(F)  \mmember{}  Functor(op-cat(C);op-cat(D)))



Date html generated: 2017_10_05-PM-03_34_04
Last ObjectModification: 2017_10_05-AM-11_32_49

Theory : small!categories


Home Index