Nuprl Lemma : presheaf-subset_wf

[C:SmallCategory]. ∀[F:Presheaf(C)]. ∀[P:I:cat-ob(C) ⟶ (ob(F) I) ⟶ ℙ].
  F|I,rho.P[I;rho] ∈ Presheaf(C) supposing stable-element-predicate(C;F;I,rho.P[I;rho])


Proof




Definitions occuring in Statement :  presheaf-subset: F|I,rho.P[I; rho] stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho]) presheaf: Presheaf(C) functor-ob: ob(F) cat-ob: cat-ob(C) small-category: SmallCategory uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a presheaf-subset: F|I,rho.P[I; rho] so_lambda: λ2x.t[x] subtype_rel: A ⊆B presheaf: Presheaf(C) all: x:A. B[x] so_apply: x[s1;s2] prop: so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) cat-ob: cat-ob(C) pi1: fst(t) type-cat: TypeCat so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] guard: {T} stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho]) implies:  Q top: Top functor-arrow: arrow(F) pi2: snd(t) compose: g
Lemmas referenced :  mk-presheaf_wf functor-ob_wf op-cat_wf small-category-subtype type-cat_wf subtype_rel-equal cat-ob_wf cat_ob_op_lemma subtype_rel_self cat-arrow_wf set_wf stable-element-predicate_wf presheaf_wf small-category_wf functor-arrow-id op-cat-id cat_arrow_triple_lemma cat_id_tuple_lemma cat-comp_wf functor-arrow-comp op-cat-arrow op-cat-comp cat_comp_tuple_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache lambdaEquality setEquality applyEquality instantiate hypothesisEquality hypothesis independent_isectElimination dependent_functionElimination functionExtensionality universeEquality lambdaFormation setElimination rename dependent_set_memberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality cumulativity independent_functionElimination voidElimination voidEquality applyLambdaEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[F:Presheaf(C)].  \mforall{}[P:I:cat-ob(C)  {}\mrightarrow{}  (ob(F)  I)  {}\mrightarrow{}  \mBbbP{}].
    F|I,rho.P[I;rho]  \mmember{}  Presheaf(C)  supposing  stable-element-predicate(C;F;I,rho.P[I;rho])



Date html generated: 2017_10_05-AM-00_51_02
Last ObjectModification: 2017_10_03-PM-03_19_41

Theory : small!categories


Home Index