Nuprl Lemma : Sierpinski-equal
∀[x,y:Sierpinski].  uiff(x = y ∈ Sierpinski;x = ⊥ ∈ Sierpinski 
⇐⇒ y = ⊥ ∈ Sierpinski)
Proof
Definitions occuring in Statement : 
Sierpinski: Sierpinski
, 
Sierpinski-bottom: ⊥
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
Sierpinski: Sierpinski
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
equal-wf-T-base, 
Sierpinski_wf, 
equal_wf, 
quotient-member-eq, 
nat_wf, 
bool_wf, 
iff_wf, 
two-class-equiv-rel, 
Sierpinski-bottom_wf, 
Sierpinski-equal-bottom, 
iff_imp_equal_bool, 
assert_functionality_wrt_uiff, 
assert_wf, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
baseClosed, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
functionEquality, 
independent_isectElimination, 
independent_functionElimination, 
promote_hyp, 
functionExtensionality, 
applyEquality, 
productEquality, 
isect_memberEquality
Latex:
\mforall{}[x,y:Sierpinski].    uiff(x  =  y;x  =  \mbot{}  \mLeftarrow{}{}\mRightarrow{}  y  =  \mbot{})
Date html generated:
2019_10_31-AM-06_36_27
Last ObjectModification:
2017_07_28-AM-09_12_14
Theory : synthetic!topology
Home
Index