Nuprl Lemma : Sierpinski-equal

[x,y:Sierpinski].  uiff(x y ∈ Sierpinski;x = ⊥ ∈ Sierpinski ⇐⇒ = ⊥ ∈ Sierpinski)


Proof




Definitions occuring in Statement :  Sierpinski: Sierpinski Sierpinski-bottom: uiff: uiff(P;Q) uall: [x:A]. B[x] iff: ⇐⇒ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q implies:  Q prop: rev_implies:  Q Sierpinski: Sierpinski quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] guard: {T} rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  equal-wf-T-base Sierpinski_wf equal_wf quotient-member-eq nat_wf bool_wf iff_wf two-class-equiv-rel Sierpinski-bottom_wf Sierpinski-equal-bottom iff_imp_equal_bool assert_functionality_wrt_uiff assert_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation equalityTransitivity equalitySymmetry hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality baseClosed because_Cache sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality pointwiseFunctionalityForEquality pertypeElimination functionEquality independent_isectElimination independent_functionElimination promote_hyp functionExtensionality applyEquality productEquality isect_memberEquality

Latex:
\mforall{}[x,y:Sierpinski].    uiff(x  =  y;x  =  \mbot{}  \mLeftarrow{}{}\mRightarrow{}  y  =  \mbot{})



Date html generated: 2019_10_31-AM-06_36_27
Last ObjectModification: 2017_07_28-AM-09_12_14

Theory : synthetic!topology


Home Index