Nuprl Lemma : sp-join-is-bottom
∀[x,y:Sierpinski].  (x ∨ y = ⊥ ∈ Sierpinski 
⇐⇒ (x = ⊥ ∈ Sierpinski) ∧ (y = ⊥ ∈ Sierpinski))
Proof
Definitions occuring in Statement : 
sp-join: f ∨ g
, 
Sierpinski: Sierpinski
, 
Sierpinski-bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
Sierpinski: Sierpinski
, 
quotient: x,y:A//B[x; y]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
sp-join: f ∨ g
, 
cand: A c∧ B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
not: ¬A
, 
false: False
, 
or: P ∨ Q
, 
guard: {T}
, 
true: True
, 
Sierpinski-bottom: ⊥
, 
bfalse: ff
, 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
Sierpinski-unequal-1, 
Sierpinski_wf, 
equal-wf-base, 
iff_wf, 
equal-wf-T-base, 
nat_wf, 
bool_wf, 
sp-join_wf, 
quotient-member-eq, 
two-class-equiv-rel, 
member_wf, 
bor_wf, 
equal-Sierpinski-bottom, 
assert_of_bor, 
or_wf, 
assert_wf, 
Sierpinski-bottom_wf, 
bfalse_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
pointwiseFunctionalityForEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productEquality, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
functionEquality, 
equalityElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
independent_isectElimination, 
independent_functionElimination, 
applyEquality, 
allFunctionality, 
promote_hyp, 
voidElimination, 
inlFormation, 
inrFormation, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}[x,y:Sierpinski].    (x  \mvee{}  y  =  \mbot{}  \mLeftarrow{}{}\mRightarrow{}  (x  =  \mbot{})  \mwedge{}  (y  =  \mbot{}))
Date html generated:
2019_10_31-AM-06_35_55
Last ObjectModification:
2017_07_28-AM-09_12_01
Theory : synthetic!topology
Home
Index