Nuprl Lemma : sp-join-is-bottom

[x,y:Sierpinski].  (x ∨ = ⊥ ∈ Sierpinski ⇐⇒ (x = ⊥ ∈ Sierpinski) ∧ (y = ⊥ ∈ Sierpinski))


Proof




Definitions occuring in Statement :  sp-join: f ∨ g Sierpinski: Sierpinski Sierpinski-bottom: uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T implies:  Q Sierpinski: Sierpinski quotient: x,y:A//B[x; y] prop: rev_implies:  Q sp-join: f ∨ g cand: c∧ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] uiff: uiff(P;Q) not: ¬A false: False or: P ∨ Q guard: {T} true: True Sierpinski-bottom: bfalse: ff bor: p ∨bq ifthenelse: if then else fi  squash: T subtype_rel: A ⊆B
Lemmas referenced :  Sierpinski-unequal-1 Sierpinski_wf equal-wf-base iff_wf equal-wf-T-base nat_wf bool_wf sp-join_wf quotient-member-eq two-class-equiv-rel member_wf bor_wf equal-Sierpinski-bottom assert_of_bor or_wf assert_wf Sierpinski-bottom_wf bfalse_wf equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin isect_memberFormation independent_pairFormation lambdaFormation pointwiseFunctionalityForEquality hypothesis sqequalRule pertypeElimination productEquality isectElimination because_Cache hypothesisEquality equalityTransitivity equalitySymmetry baseClosed functionEquality equalityElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality isect_memberEquality independent_isectElimination independent_functionElimination applyEquality allFunctionality promote_hyp voidElimination inlFormation inrFormation equalityUniverse levelHypothesis natural_numberEquality imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[x,y:Sierpinski].    (x  \mvee{}  y  =  \mbot{}  \mLeftarrow{}{}\mRightarrow{}  (x  =  \mbot{})  \mwedge{}  (y  =  \mbot{}))



Date html generated: 2019_10_31-AM-06_35_55
Last ObjectModification: 2017_07_28-AM-09_12_01

Theory : synthetic!topology


Home Index