Nuprl Lemma : arith-example2

f:ℤ ⟶ ℤ. ∀a,b:ℤ.
  ((a b ∈ ℤ)
   (∀x,y,z:ℤ.
        (((f a) ≤ x)
         (x ≤ (f b))
         (((x 1) ≤ y) ∧ (y ≤ ((f b) 1)))
         ((((f b) 1) ≤ z) ∧ (z ≤ (x 1)))
         (((y 1) ≤ z) ∧ (z ≤ (y 1)))
         (((x y ∈ ℤ) ∨ (x z ∈ ℤ)) ∨ (y z ∈ ℤ)))))


Proof




Definitions occuring in Statement :  le: A ≤ B all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B or: P ∨ Q le: A ≤ B uimplies: supposing a subtract: m top: Top uiff: uiff(P;Q) not: ¬A less_than': less_than'(a;b) true: True false: False iff: ⇐⇒ Q decidable: Dec(P) rev_implies:  Q guard: {T}
Lemmas referenced :  le_wf subtract_wf equal-wf-base int_subtype_base false_wf or_wf condition-implies-le add-associates minus-one-mul add-swap minus-one-mul-top add_functionality_wrt_le add-commutes le-add-cancel2 minus-add minus-minus le-add-cancel le-add-cancel3 and_wf equal_wf decidable__int_equal not-equal-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin productEquality cut introduction extract_by_obid isectElimination hypothesisEquality natural_numberEquality hypothesis addEquality applyEquality functionExtensionality intEquality sqequalRule functionEquality because_Cache unionElimination independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality minusEquality independent_functionElimination equalitySymmetry dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination rename equalityTransitivity dependent_functionElimination inlFormation inrFormation addLevel orFunctionality

Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}a,b:\mBbbZ{}.
    ((a  =  b)
    {}\mRightarrow{}  (\mforall{}x,y,z:\mBbbZ{}.
                (((f  a)  \mleq{}  x)
                {}\mRightarrow{}  (x  \mleq{}  (f  b))
                {}\mRightarrow{}  (((x  -  1)  \mleq{}  y)  \mwedge{}  (y  \mleq{}  ((f  b)  +  1)))
                {}\mRightarrow{}  ((((f  b)  -  1)  \mleq{}  z)  \mwedge{}  (z  \mleq{}  (x  +  1)))
                {}\mRightarrow{}  (((y  -  1)  \mleq{}  z)  \mwedge{}  (z  \mleq{}  (y  +  1)))
                {}\mRightarrow{}  (((x  =  y)  \mvee{}  (x  =  z))  \mvee{}  (y  =  z)))))



Date html generated: 2017_04_14-AM-07_16_31
Last ObjectModification: 2017_02_27-PM-02_51_51

Theory : arithmetic


Home Index