Nuprl Lemma : simple_fan_theorem-ext

[X:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ]
  (∀n:ℕ. ∀s:ℕn ⟶ 𝔹.  Dec(X[n;s]))  (∃k:ℕ [(∀f:ℕ ⟶ 𝔹. ∃n:ℕk. X[n;f])]) supposing ∀f:ℕ ⟶ 𝔹(↓∃n:ℕX[n;f])


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: bool: 𝔹 decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] squash: T implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T bottom: seq-normalize: seq-normalize(n;s) uall: [x:A]. B[x] top: Top has-value: (a)↓ not: ¬A implies:  Q false: False and: P ∧ Q all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a less_than: a < b less_than': less_than'(a;b) true: True squash: T prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b simple_fan_theorem basic_bar_induction so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] strict4: strict4(F)
Lemmas referenced :  simple_fan_theorem strictness-apply bottom_diverge exception-not-bottom has-value_wf_base is-exception_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf bottom-sqle eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot exception-not-value value-type-has-value int-value-type lifting-strict-less base_wf basic_bar_induction
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination isect_memberEquality voidElimination voidEquality sqequalSqle sqleRule sqleReflexivity divergentSqle callbyvalueCallbyvalue callbyvalueReduce independent_functionElimination callbyvalueExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion baseClosed hypothesisEquality callbyvalueLess productElimination lambdaFormation unionElimination equalityElimination because_Cache independent_isectElimination lessCases isect_memberFormation sqequalAxiom independent_pairFormation natural_numberEquality imageMemberEquality imageElimination dependent_pairFormation promote_hyp dependent_functionElimination cumulativity lessExceptionCases intEquality callbyvalueAdd addExceptionCases inlFormation

Latex:
\mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}]
    (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    Dec(X[n;s]))  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}  [(\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  X[n;f])]) 
    supposing  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  X[n;f])



Date html generated: 2018_05_21-PM-00_03_36
Last ObjectModification: 2018_05_19-AM-07_10_58

Theory : bool_1


Home Index