Nuprl Lemma : Wadd-assoc

[A:Type]. ∀[B:A ⟶ Type]. ∀[zero:A ⟶ 𝔹]. ∀[w3,w2,w1:W(A;a.B[a])].  ((w1 (w2 w3)) ((w1 w2) w3) ∈ W(A;a.B[a]))


Proof




Definitions occuring in Statement :  Wadd: (w1 w2) W: W(A;a.B[a]) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] Wadd: (w1 w2) Wsup: Wsup(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  W-induction all_wf equal_wf Wadd_wf bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot W_wf Wsup_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality cumulativity because_Cache hypothesis independent_functionElimination lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate voidElimination functionEquality isect_memberEquality axiomEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[zero:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[w3,w2,w1:W(A;a.B[a])].
    ((w1  +  (w2  +  w3))  =  ((w1  +  w2)  +  w3))



Date html generated: 2017_04_14-AM-07_44_22
Last ObjectModification: 2017_02_27-PM-03_15_09

Theory : co-recursion


Home Index