Nuprl Lemma : Wadd_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[zero:A ⟶ 𝔹]. ∀[w2,w1:W(A;a.B[a])].  ((w1 w2) ∈ W(A;a.B[a]))


Proof




Definitions occuring in Statement :  Wadd: (w1 w2) W: W(A;a.B[a]) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] Wadd: (w1 w2) Wsup: Wsup(a;b) all: x:A. B[x] implies:  Q exposed-it: exposed-it bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nat: subtype_rel: A ⊆B pcw-pp-barred: Barred(pp) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) iff: ⇐⇒ Q not: ¬A rev_implies:  Q subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True cw-step: cw-step(A;a.B[a]) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) spreadn: spread3 less_than: a < b squash: T isr: isr(x) ext-eq: A ≡ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] ext-family: F ≡ G pi1: fst(t) nat_plus: + W-rel: W-rel(A;a.B[a];w) param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w) pcw-steprel: StepRel(s1;s2) pi2: snd(t) isl: isl(x) pcw-step-agree: StepAgree(s;p1;w) cand: c∧ B sq_stable: SqStable(P)
Lemmas referenced :  W_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot Wsup_wf W-elimination-facts int_seg_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top nat_wf minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel-alt lelt_wf top_wf less_than_wf true_wf add-subtract-cancel W-ext param-co-W-ext unit_wf2 it_wf param-co-W_wf ext-eq_inversion subtype_rel_weakening assert_wf btrue_wf bfalse_wf pcw-steprel_wf subtype_rel_dep_function set_subtype_base le_wf int_subtype_base decidable__int_equal not-equal-2 minus-zero le-add-cancel2 int_seg_subtype sq_stable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality equalityTransitivity hypothesis equalitySymmetry because_Cache extract_by_obid cumulativity lambdaEquality applyEquality functionExtensionality functionEquality universeEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination strong_bar_Induction natural_numberEquality setElimination rename dependent_set_memberEquality independent_pairFormation addEquality voidEquality minusEquality intEquality lessCases sqequalAxiom imageMemberEquality baseClosed imageElimination int_eqReduceTrueSq hypothesis_subsumption dependent_pairEquality productEquality inlEquality unionEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[zero:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[w2,w1:W(A;a.B[a])].    ((w1  +  w2)  \mmember{}  W(A;a.B[a]))



Date html generated: 2017_04_14-AM-07_44_18
Last ObjectModification: 2017_02_27-PM-03_15_26

Theory : co-recursion


Home Index