Nuprl Lemma : pcw-pp-head_wf
∀[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[pp:PartialPath].
  pcw-pp-head(pp) ∈ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]) supposing ¬↑pcw-pp-null(pp)
Proof
Definitions occuring in Statement : 
pcw-pp-head: pcw-pp-head(pp), 
pcw-pp-null: pcw-pp-null(pp), 
pcw-pp: PartialPath, 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s1;s2;s3], 
so_apply: x[s1;s2], 
so_apply: x[s], 
not: ¬A, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
pcw-pp-head: pcw-pp-head(pp), 
pcw-pp: PartialPath, 
pcw-pp-null: pcw-pp-null(pp), 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
not: ¬A, 
implies: P ⇒ Q, 
nat: ℕ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
top: Top, 
true: True
Lemmas referenced : 
not_wf, 
assert_wf, 
pcw-pp-null_wf, 
pcw-pp_wf, 
assert_of_le_int, 
le_wf, 
false_wf, 
decidable__lt, 
not-lt-2, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-zero, 
add-zero, 
add-commutes, 
zero-add, 
add_functionality_wrt_le, 
le-add-cancel, 
lelt_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality, 
lambdaFormation, 
independent_functionElimination, 
natural_numberEquality, 
independent_isectElimination, 
promote_hyp, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
addEquality, 
voidEquality, 
intEquality, 
minusEquality
Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
\mforall{}[pp:PartialPath].
    pcw-pp-head(pp)  \mmember{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])  supposing  \mneg{}\muparrow{}pcw-pp-null(pp)
Date html generated:
2016_05_14-AM-06_13_04
Last ObjectModification:
2015_12_26-PM-00_05_50
Theory : co-recursion
Home
Index