Nuprl Lemma : pcw-pp-head_wf

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[pp:PartialPath].
  pcw-pp-head(pp) ∈ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]) supposing ¬↑pcw-pp-null(pp)


Proof




Definitions occuring in Statement :  pcw-pp-head: pcw-pp-head(pp) pcw-pp-null: pcw-pp-null(pp) pcw-pp: PartialPath pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) assert: b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] not: ¬A member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a pcw-pp-head: pcw-pp-head(pp) pcw-pp: PartialPath pcw-pp-null: pcw-pp-null(pp) prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] not: ¬A implies:  Q nat: uiff: uiff(P;Q) and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q subtract: m subtype_rel: A ⊆B top: Top true: True
Lemmas referenced :  not_wf assert_wf pcw-pp-null_wf pcw-pp_wf assert_of_le_int le_wf false_wf decidable__lt not-lt-2 not-le-2 condition-implies-le minus-add minus-zero add-zero add-commutes zero-add add_functionality_wrt_le le-add-cancel lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution setElimination thin rename productElimination applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination lambdaEquality isect_memberEquality because_Cache functionEquality cumulativity universeEquality lambdaFormation independent_functionElimination natural_numberEquality independent_isectElimination promote_hyp dependent_set_memberEquality independent_pairFormation dependent_functionElimination unionElimination voidElimination addEquality voidEquality intEquality minusEquality

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
\mforall{}[pp:PartialPath].
    pcw-pp-head(pp)  \mmember{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])  supposing  \mneg{}\muparrow{}pcw-pp-null(pp)



Date html generated: 2016_05_14-AM-06_13_04
Last ObjectModification: 2015_12_26-PM-00_05_50

Theory : co-recursion


Home Index