Nuprl Lemma : init0-baire-diff-from

a:ℕ ⟶ ℕ. ∀n:ℕ.  (0 <  init0(a)  init0(baire-diff-from(a;n)))


Proof




Definitions occuring in Statement :  baire-diff-from: baire-diff-from(a;k) init0: init0(a) nat: less_than: a < b all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  less_than': less_than'(a;b) le: A ≤ B assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff or: P ∨ Q decidable: Dec(P) subtype_rel: A ⊆B prop: top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 nat: uall: [x:A]. B[x] member: t ∈ T init0: init0(a) baire-diff-from: baire-diff-from(a;k) implies:  Q all: x:A. B[x]
Lemmas referenced :  less_than_wf init0_wf and_wf false_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert le_wf nat-pred_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_wf decidable__equal_int nat_properties assert_of_le_int eqtt_to_assert bool_wf le_int_wf
Rules used in proof :  functionEquality applyLambdaEquality levelHypothesis addLevel hyp_replacement independent_functionElimination cumulativity instantiate promote_hyp dependent_set_memberEquality addEquality computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality lambdaEquality dependent_pairFormation functionExtensionality applyEquality int_eqEquality dependent_functionElimination hypothesisEquality independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination natural_numberEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n:\mBbbN{}.    (0  <  n  {}\mRightarrow{}  init0(a)  {}\mRightarrow{}  init0(baire-diff-from(a;n)))



Date html generated: 2017_04_21-AM-11_23_49
Last ObjectModification: 2017_04_20-PM-05_49_05

Theory : continuity


Home Index