Nuprl Lemma : int2nat_wf

[i:ℤ]. (int2nat(i) ∈ ℕ)


Proof




Definitions occuring in Statement :  int2nat: int2nat(i) nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int2nat: int2nat(i) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False nat: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  lt_int_wf eqtt_to_assert assert_of_lt_int istype-top istype-void subtract_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermMultiply_wf itermSubtract_wf itermMinus_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_subtract_lemma int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule hypothesisEquality closedConclusion natural_numberEquality extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination productElimination independent_isectElimination lessCases axiomSqEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  independent_pairFormation voidElimination imageMemberEquality baseClosed imageElimination independent_functionElimination Error :dependent_set_memberEquality_alt,  addEquality multiplyEquality minusEquality dependent_functionElimination approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :universeIsType,  equalityTransitivity equalitySymmetry Error :equalityIstype,  promote_hyp instantiate cumulativity axiomEquality

Latex:
\mforall{}[i:\mBbbZ{}].  (int2nat(i)  \mmember{}  \mBbbN{})



Date html generated: 2019_06_20-PM-02_52_05
Last ObjectModification: 2019_02_06-PM-06_49_52

Theory : continuity


Home Index