Nuprl Lemma : not-canonicalizable-implies-subtype-base

¬(∀[T:Type]. (canonicalizable(T)  (T ⊆Base)))


Proof




Definitions occuring in Statement :  canonicalizable: canonicalizable(T) subtype_rel: A ⊆B uall: [x:A]. B[x] not: ¬A implies:  Q base: Base universe: Type
Definitions unfolded in proof :  not: ¬A implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q guard: {T} sq_type: SQType(T) has-value: (a)↓ true: True is-exception: is-exception(t)
Lemmas referenced :  uall_wf canonicalizable_wf subtype_rel_wf base_wf nat_wf canonicalizable-nat-to-nat nat_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__le intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma le_wf equal_functionality_wrt_subtype_rel2 and_wf equal_wf subtype_base_sq subtype_rel_self has-value_wf_base is-exception_wf bottom-sqle exception-not-value_1 bottom_diverge
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin universeEquality sqequalRule lambdaEquality cumulativity functionEquality hypothesisEquality hypothesis independent_functionElimination functionExtensionality setElimination rename dependent_functionElimination addEquality natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality because_Cache independent_pairFormation equalityTransitivity equalitySymmetry applyLambdaEquality productElimination baseApply closedConclusion baseClosed sqequalSqle divergentSqle callbyvalueAdd isintReduceTrue addExceptionCases axiomSqleEquality sqleReflexivity

Latex:
\mneg{}(\mforall{}[T:Type].  (canonicalizable(T)  {}\mRightarrow{}  (T  \msubseteq{}r  Base)))



Date html generated: 2017_04_17-AM-10_02_15
Last ObjectModification: 2017_02_27-PM-05_53_45

Theory : continuity


Home Index