Nuprl Lemma : not-canonicalizable-implies-subtype-base
¬(∀[T:Type]. (canonicalizable(T) ⇒ (T ⊆r Base)))
Proof
Definitions occuring in Statement : 
canonicalizable: canonicalizable(T), 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
base: Base, 
universe: Type
Definitions unfolded in proof : 
not: ¬A, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
guard: {T}, 
sq_type: SQType(T), 
has-value: (a)↓, 
true: True, 
is-exception: is-exception(t)
Lemmas referenced : 
uall_wf, 
canonicalizable_wf, 
subtype_rel_wf, 
base_wf, 
nat_wf, 
canonicalizable-nat-to-nat, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformand_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
le_wf, 
equal_functionality_wrt_subtype_rel2, 
and_wf, 
equal_wf, 
subtype_base_sq, 
subtype_rel_self, 
has-value_wf_base, 
is-exception_wf, 
bottom-sqle, 
exception-not-value_1, 
bottom_diverge
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
functionEquality, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
functionExtensionality, 
setElimination, 
rename, 
dependent_functionElimination, 
addEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
because_Cache, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
productElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalSqle, 
divergentSqle, 
callbyvalueAdd, 
isintReduceTrue, 
addExceptionCases, 
axiomSqleEquality, 
sqleReflexivity
Latex:
\mneg{}(\mforall{}[T:Type].  (canonicalizable(T)  {}\mRightarrow{}  (T  \msubseteq{}r  Base)))
Date html generated:
2017_04_17-AM-10_02_15
Last ObjectModification:
2017_02_27-PM-05_53_45
Theory : continuity
Home
Index