Nuprl Lemma : seq-add-same

[f:ℕ ⟶ ℕ]. ∀[n:ℕ].  (f.f n@n f ∈ (ℕ ⟶ ℕ))


Proof




Definitions occuring in Statement :  seq-add: s.x@n nat: uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T seq-add: s.x@n nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a sq_type: SQType(T) guard: {T} ge: i ≥  prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int subtype_base_sq int_subtype_base nat_properties decidable__equal_nat nat_wf le_wf satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma equal_wf int_formula_prop_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination int_eqReduceTrueSq promote_hyp instantiate cumulativity intEquality dependent_functionElimination independent_functionElimination applyEquality dependent_set_memberEquality natural_numberEquality because_Cache dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll int_eqReduceFalseSq axiomEquality functionEquality

Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[n:\mBbbN{}].    (f.f  n@n  =  f)



Date html generated: 2017_04_20-AM-07_21_54
Last ObjectModification: 2017_02_27-PM-05_56_48

Theory : continuity


Home Index