Nuprl Lemma : strong-continuity2-implies-uniform-continuity2
∀F:(ℕ ⟶ 𝔹) ⟶ 𝔹. ∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f = g ∈ (ℕn ⟶ 𝔹)) ⇒ F f = F g)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uniform-continuity-pi: ucA(T;F;n), 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
cand: A c∧ B, 
quotient: x,y:A//B[x; y], 
squash: ↓T, 
sq_type: SQType(T), 
guard: {T}, 
uniform-continuity-pi-pi: ucpB(T;F;n)
Lemmas referenced : 
istype-nat, 
bool_wf, 
strong-continuity2-implies-uniform-continuity, 
uniform-continuity-pi-pi-prop2, 
decidable__equal_bool, 
int_seg_wf, 
subtype_rel_function, 
nat_wf, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
true_wf, 
quotient_wf, 
exists_wf, 
uniform-continuity-pi-pi_wf, 
equiv_rel_true, 
quotient-member-eq, 
member_wf, 
squash_wf, 
istype-universe, 
prop-truncation-implies, 
uniform-continuity-pi-pi-prop, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
equal_wf, 
uniform-continuity-pi_wf, 
le_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :functionIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
Error :universeIsType, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
Error :inhabitedIsType, 
sqequalRule, 
productElimination, 
independent_pairFormation, 
rename, 
Error :productIsType, 
Error :equalityIstype, 
isectElimination, 
natural_numberEquality, 
setElimination, 
applyEquality, 
independent_isectElimination, 
promote_hyp, 
Error :lambdaEquality_alt, 
productEquality, 
pointwiseFunctionality, 
pertypeElimination, 
sqequalBase, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
cumulativity, 
intEquality, 
closedConclusion, 
Error :dependent_pairEquality_alt, 
independent_pairEquality, 
Error :functionExtensionality_alt, 
functionExtensionality, 
functionEquality, 
equalityElimination
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  F  f  =  F  g)
Date html generated:
2019_06_20-PM-02_53_23
Last ObjectModification:
2018_11_28-AM-09_03_50
Theory : continuity
Home
Index