Nuprl Lemma : unsquashed-BIM-false
¬(∀B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
((∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. Q[n + 1;s.m@n])
⇒ Q[n;s]))
⇒ (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. B[n;f]))
⇒ (∀n:ℕ. ∀s:ℕn ⟶ ℕ. ∀m:ℕ. (B[n;s]
⇒ B[n + 1;s.m@n]))
⇒ (∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ Q[n;s]))
⇒ Q[0;λx.⊥]))
Proof
Definitions occuring in Statement :
quotient: x,y:A//B[x; y]
,
seq-add: s.x@n
,
int_seg: {i..j-}
,
nat: ℕ
,
bottom: ⊥
,
prop: ℙ
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
true: True
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
lelt: i ≤ j < k
,
int_seg: {i..j-}
,
guard: {T}
,
so_lambda: λ2x y.t[x; y]
,
less_than': less_than'(a;b)
,
le: A ≤ B
,
so_apply: x[s]
,
and: P ∧ Q
,
top: Top
,
exists: ∃x:A. B[x]
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
uimplies: b supposing a
,
or: P ∨ Q
,
decidable: Dec(P)
,
all: ∀x:A. B[x]
,
ge: i ≥ j
,
so_apply: x[s1;s2]
,
so_lambda: λ2x.t[x]
,
nat: ℕ
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
Lemmas referenced :
int_formula_prop_less_lemma,
intformless_wf,
int_seg_properties,
equiv_rel_true,
true_wf,
subtype_rel_self,
false_wf,
int_seg_subtype_nat,
subtype_rel_dep_function,
exists_wf,
quotient_wf,
seq-add_wf,
le_wf,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
nat_properties,
int_seg_wf,
nat_wf,
all_wf,
unsquashed-weak-continuity-false2,
unsquashed-BIM-implies-unsquashed-weak-continuity
Rules used in proof :
productElimination,
computeAll,
independent_pairFormation,
voidEquality,
isect_memberEquality,
intEquality,
int_eqEquality,
dependent_pairFormation,
independent_isectElimination,
unionElimination,
dependent_functionElimination,
addEquality,
dependent_set_memberEquality,
functionExtensionality,
because_Cache,
rename,
setElimination,
natural_numberEquality,
sqequalRule,
universeEquality,
hypothesisEquality,
cumulativity,
lambdaEquality,
applyEquality,
functionEquality,
isectElimination,
instantiate,
voidElimination,
hypothesis,
thin,
independent_functionElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
lambdaFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mneg{}(\mforall{}B,Q:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}.
((\mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. ((\mforall{}m:\mBbbN{}. Q[n + 1;s.m@n]) {}\mRightarrow{} Q[n;s]))
{}\mRightarrow{} (\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \00D9(\mexists{}n:\mBbbN{}. B[n;f]))
{}\mRightarrow{} (\mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. \mforall{}m:\mBbbN{}. (B[n;s] {}\mRightarrow{} B[n + 1;s.m@n]))
{}\mRightarrow{} (\mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. (B[n;s] {}\mRightarrow{} Q[n;s]))
{}\mRightarrow{} Q[0;\mlambda{}x.\mbot{}]))
Date html generated:
2016_11_09-AM-06_18_18
Last ObjectModification:
2016_11_08-PM-05_11_00
Theory : continuity
Home
Index