Nuprl Lemma : disjoint-iff-null-intersection

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b:T List].  uiff(l_disjoint(T;a;b);l_intersection(eq;a;b) [] ∈ (T List))


Proof




Definitions occuring in Statement :  l_intersection: l_intersection(eq;L1;L2) l_disjoint: l_disjoint(T;l1;l2) nil: [] list: List deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_disjoint: l_disjoint(T;l1;l2) uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q false: False or: P ∨ Q cons: [a b] iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B
Lemmas referenced :  all_wf not_wf l_member_wf equal-wf-T-base list_wf l_intersection_wf deq_wf list-cases product_subtype_list equal_wf cons_member member-intersection null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality productEquality lambdaFormation independent_functionElimination voidElimination dependent_functionElimination because_Cache baseClosed productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality unionElimination promote_hyp hypothesis_subsumption rename inlFormation hyp_replacement applyLambdaEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:T  List].    uiff(l\_disjoint(T;a;b);l\_intersection(eq;a;b)  =  [])



Date html generated: 2017_04_17-AM-09_16_20
Last ObjectModification: 2017_02_27-PM-05_21_36

Theory : decidable!equality


Home Index