Nuprl Lemma : disjoint-iff-null-intersection
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b:T List].  uiff(l_disjoint(T;a;b);l_intersection(eq;a;b) = [] ∈ (T List))
Proof
Definitions occuring in Statement : 
l_intersection: l_intersection(eq;L1;L2)
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
nil: []
, 
list: T List
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
l_disjoint: l_disjoint(T;l1;l2)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
or: P ∨ Q
, 
cons: [a / b]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
Lemmas referenced : 
all_wf, 
not_wf, 
l_member_wf, 
equal-wf-T-base, 
list_wf, 
l_intersection_wf, 
deq_wf, 
list-cases, 
product_subtype_list, 
equal_wf, 
cons_member, 
member-intersection, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
lambdaFormation, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
because_Cache, 
baseClosed, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
rename, 
inlFormation, 
hyp_replacement, 
applyLambdaEquality, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:T  List].    uiff(l\_disjoint(T;a;b);l\_intersection(eq;a;b)  =  [])
Date html generated:
2017_04_17-AM-09_16_20
Last ObjectModification:
2017_02_27-PM-05_21_36
Theory : decidable!equality
Home
Index