Nuprl Lemma : list-diff-property
∀[T:Type]
  ∀eq:EqDecider(T). ∀as,bs:T List.
    ((∀x:T. ((x ∈ as-bs) 
⇐⇒ (x ∈ as) ∧ (¬(x ∈ bs)))) ∧ no_repeats(T;as-bs) supposing no_repeats(T;as))
Proof
Definitions occuring in Statement : 
list-diff: as-bs
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
list-diff: as-bs
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
not: ¬A
, 
false: False
, 
uimplies: b supposing a
Lemmas referenced : 
list_wf, 
deq_wf, 
member_filter, 
bnot_wf, 
deq-member_wf, 
l_member_wf, 
filter_wf5, 
all_wf, 
iff_wf, 
and_wf, 
assert_wf, 
not_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
assert-deq-member, 
no_repeats_filter, 
no_repeats_witness, 
list-diff_wf, 
no_repeats_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
sqequalRule, 
addLevel, 
allFunctionality, 
productElimination, 
impliesFunctionality, 
dependent_functionElimination, 
lambdaEquality, 
independent_functionElimination, 
cumulativity, 
because_Cache, 
setElimination, 
rename, 
setEquality, 
voidElimination, 
introduction, 
andLevelFunctionality, 
independent_isectElimination
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}as,bs:T  List.
        ((\mforall{}x:T.  ((x  \mmember{}  as-bs)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  as)  \mwedge{}  (\mneg{}(x  \mmember{}  bs))))
        \mwedge{}  no\_repeats(T;as-bs)  supposing  no\_repeats(T;as))
Date html generated:
2016_05_14-PM-03_29_47
Last ObjectModification:
2015_12_26-PM-06_03_11
Theory : decidable!equality
Home
Index