Nuprl Lemma : list-diff-property

[T:Type]
  ∀eq:EqDecider(T). ∀as,bs:T List.
    ((∀x:T. ((x ∈ as-bs) ⇐⇒ (x ∈ as) ∧ (x ∈ bs)))) ∧ no_repeats(T;as-bs) supposing no_repeats(T;as))


Proof




Definitions occuring in Statement :  list-diff: as-bs no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q member: t ∈ T list-diff: as-bs iff: ⇐⇒ Q implies:  Q prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] not: ¬A false: False uimplies: supposing a
Lemmas referenced :  list_wf deq_wf member_filter bnot_wf deq-member_wf l_member_wf filter_wf5 all_wf iff_wf and_wf assert_wf not_wf iff_transitivity iff_weakening_uiff assert_of_bnot assert-deq-member no_repeats_filter no_repeats_witness list-diff_wf no_repeats_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeEquality sqequalRule addLevel allFunctionality productElimination impliesFunctionality dependent_functionElimination lambdaEquality independent_functionElimination cumulativity because_Cache setElimination rename setEquality voidElimination introduction andLevelFunctionality independent_isectElimination

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}as,bs:T  List.
        ((\mforall{}x:T.  ((x  \mmember{}  as-bs)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  as)  \mwedge{}  (\mneg{}(x  \mmember{}  bs))))
        \mwedge{}  no\_repeats(T;as-bs)  supposing  no\_repeats(T;as))



Date html generated: 2016_05_14-PM-03_29_47
Last ObjectModification: 2015_12_26-PM-06_03_11

Theory : decidable!equality


Home Index