Nuprl Lemma : remove-repeats-fun-as-remove-repeats-map

[A,B:Type]. ∀[eq:EqDecider(B)]. ∀[f:A ⟶ B]. ∀[L:A List].
  (map(f;remove-repeats-fun(eq;f;L)) remove-repeats(eq;map(f;L)) ∈ (B List))


Proof




Definitions occuring in Statement :  remove-repeats-fun: remove-repeats-fun(eq;f;L) remove-repeats: remove-repeats(eq;L) map: map(f;as) list: List deq: EqDecider(T) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] top: Top remove-repeats-fun: remove-repeats-fun(eq;f;L) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] squash: T compose: g prop: deq: EqDecider(T) true: True
Lemmas referenced :  list_induction equal_wf list_wf map_wf remove-repeats-fun_wf remove-repeats_wf map_nil_lemma remove_repeats_nil_lemma list_ind_nil_lemma nil_wf map_cons_lemma remove_repeats_cons_lemma list_ind_cons_lemma cons_wf filter-map filter_wf5 l_member_wf bnot_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis functionExtensionality applyEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation rename imageElimination because_Cache equalitySymmetry setElimination setEquality hyp_replacement Error :applyLambdaEquality,  natural_numberEquality imageMemberEquality baseClosed axiomEquality functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[eq:EqDecider(B)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[L:A  List].
    (map(f;remove-repeats-fun(eq;f;L))  =  remove-repeats(eq;map(f;L)))



Date html generated: 2016_10_21-AM-10_39_56
Last ObjectModification: 2016_07_12-AM-05_50_00

Theory : decidable!equality


Home Index