Nuprl Lemma : fset-antichain-add
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(fset(T))]. ∀[x:fset(T)].
  uiff(↑fset-antichain(eq;fset-add(deq-fset(eq);x;s));(↑fset-antichain(eq;s))
  ∧ (∀xs:fset(T). (¬xs ⊆≠ x) ∧ (¬x ⊆≠ xs) supposing xs ∈ s))
Proof
Definitions occuring in Statement : 
fset-antichain: fset-antichain(eq;ac)
, 
f-proper-subset: xs ⊆≠ ys
, 
deq-fset: deq-fset(eq)
, 
fset-add: fset-add(eq;x;s)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
f-proper-subset: xs ⊆≠ ys
Lemmas referenced : 
f-proper-subset_wf, 
fset-member_wf, 
fset_wf, 
deq-fset_wf, 
istype-void, 
assert_wf, 
fset-antichain_wf, 
fset-add_wf, 
not_wf, 
equal_wf, 
istype-assert, 
deq_wf, 
istype-universe, 
assert_witness, 
iff_transitivity, 
iff_weakening_uiff, 
assert-fset-antichain, 
member-fset-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
independent_isectElimination, 
Error :inrFormation_alt, 
Error :equalityIstype, 
Error :inhabitedIsType, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
Error :lambdaEquality_alt, 
Error :functionIsTypeImplies, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inlFormation_alt, 
productElimination, 
independent_pairEquality, 
Error :functionIsType, 
Error :isectIsType, 
Error :unionIsType, 
unionElimination, 
Error :productIsType, 
functionEquality, 
isectEquality, 
unionEquality, 
instantiate, 
universeEquality, 
promote_hyp, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
Error :dependent_set_memberEquality_alt, 
applyLambdaEquality, 
setElimination, 
rename
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(fset(T))].  \mforall{}[x:fset(T)].
    uiff(\muparrow{}fset-antichain(eq;fset-add(deq-fset(eq);x;s));(\muparrow{}fset-antichain(eq;s))
    \mwedge{}  (\mforall{}xs:fset(T).  (\mneg{}xs  \msubseteq{}\mneq{}  x)  \mwedge{}  (\mneg{}x  \msubseteq{}\mneq{}  xs)  supposing  xs  \mmember{}  s))
Date html generated:
2019_06_20-PM-01_59_30
Last ObjectModification:
2018_12_07-AM-10_21_49
Theory : finite!sets
Home
Index