Nuprl Lemma : fset-antichain-add

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(fset(T))]. ∀[x:fset(T)].
  uiff(↑fset-antichain(eq;fset-add(deq-fset(eq);x;s));(↑fset-antichain(eq;s))
  ∧ (∀xs:fset(T). xs ⊆≠ x) ∧ x ⊆≠ xs) supposing xs ∈ s))


Proof




Definitions occuring in Statement :  fset-antichain: fset-antichain(eq;ac) f-proper-subset: xs ⊆≠ ys deq-fset: deq-fset(eq) fset-add: fset-add(eq;x;s) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q universe: Type
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T all: x:A. B[x] not: ¬A implies:  Q false: False or: P ∨ Q uall: [x:A]. B[x] prop: guard: {T} iff: ⇐⇒ Q rev_implies:  Q f-proper-subset: xs ⊆≠ ys
Lemmas referenced :  f-proper-subset_wf fset-member_wf fset_wf deq-fset_wf istype-void assert_wf fset-antichain_wf fset-add_wf not_wf equal_wf istype-assert deq_wf istype-universe assert_witness iff_transitivity iff_weakening_uiff assert-fset-antichain member-fset-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  thin hypothesis sqequalHypSubstitution dependent_functionElimination hypothesisEquality independent_isectElimination Error :inrFormation_alt,  Error :equalityIstype,  Error :inhabitedIsType,  because_Cache independent_functionElimination voidElimination Error :universeIsType,  extract_by_obid isectElimination sqequalRule Error :lambdaEquality_alt,  Error :functionIsTypeImplies,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inlFormation_alt,  productElimination independent_pairEquality Error :functionIsType,  Error :isectIsType,  Error :unionIsType,  unionElimination Error :productIsType,  functionEquality isectEquality unionEquality instantiate universeEquality promote_hyp equalityTransitivity equalitySymmetry hyp_replacement Error :dependent_set_memberEquality_alt,  applyLambdaEquality setElimination rename

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(fset(T))].  \mforall{}[x:fset(T)].
    uiff(\muparrow{}fset-antichain(eq;fset-add(deq-fset(eq);x;s));(\muparrow{}fset-antichain(eq;s))
    \mwedge{}  (\mforall{}xs:fset(T).  (\mneg{}xs  \msubseteq{}\mneq{}  x)  \mwedge{}  (\mneg{}x  \msubseteq{}\mneq{}  xs)  supposing  xs  \mmember{}  s))



Date html generated: 2019_06_20-PM-01_59_30
Last ObjectModification: 2018_12_07-AM-10_21_49

Theory : finite!sets


Home Index