Nuprl Lemma : int_seg_well_founded_down
∀i:ℤ. ∀j:{i...}.  WellFnd{i}({i..j-};x,y.x > y)
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
gt: i > j
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
int_upper: {i...}
, 
so_apply: x[s1;s2]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
gt: i > j
, 
iff: P 
⇐⇒ Q
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
int_upper_wf, 
int_upper_well_founded, 
inv_image_ind, 
less_than_wf, 
int_seg_wf, 
subtract_wf, 
int_seg_properties, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
wellfounded_functionality_wrt_iff, 
iff_weakening_uiff, 
minus_mono_wrt_lt, 
decidable__lt, 
itermMinus_wf, 
int_term_value_minus_lemma, 
gt_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
dependent_functionElimination, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
because_Cache, 
productElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
minusEquality, 
isect_memberFormation, 
functionEquality, 
applyEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}j:\{i...\}.    WellFnd\{i\}(\{i..j\msupminus{}\};x,y.x  >  y)
Date html generated:
2018_05_21-PM-00_26_14
Last ObjectModification:
2018_05_19-AM-06_52_04
Theory : int_2
Home
Index