Nuprl Lemma : int_seg_well_founded_down

i:ℤ. ∀j:{i...}.  WellFnd{i}({i..j-};x,y.x > y)


Proof




Definitions occuring in Statement :  int_upper: {i...} int_seg: {i..j-} wellfounded: WellFnd{i}(A;x,y.R[x; y]) gt: i > j all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] int_upper: {i...} so_apply: x[s1;s2] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: uiff: uiff(P;Q) gt: i > j iff: ⇐⇒ Q wellfounded: WellFnd{i}(A;x,y.R[x; y]) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  int_upper_wf int_upper_well_founded inv_image_ind less_than_wf int_seg_wf subtract_wf int_seg_properties int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf wellfounded_functionality_wrt_iff iff_weakening_uiff minus_mono_wrt_lt decidable__lt itermMinus_wf int_term_value_minus_lemma gt_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality dependent_functionElimination natural_numberEquality sqequalRule lambdaEquality setElimination rename dependent_set_memberEquality because_Cache productElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation minusEquality isect_memberFormation functionEquality applyEquality cumulativity universeEquality

Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}j:\{i...\}.    WellFnd\{i\}(\{i..j\msupminus{}\};x,y.x  >  y)



Date html generated: 2018_05_21-PM-00_26_14
Last ObjectModification: 2018_05_19-AM-06_52_04

Theory : int_2


Home Index