Nuprl Lemma : mu-unique

āˆ€[f:ā„• āŸ¶ š”¹]. āˆ€[x:ā„•].  mu(f) x āˆˆ ā„¤ supposing (ā†‘(f x)) āˆ§ (āˆ€y:ā„•x. (Ā¬ā†‘(f y)))


Proof




Definitions occuring in Statement :  mu: mu(f) int_seg: {i..j-} nat: ā„• assert: ā†‘b bool: š”¹ uimplies: supposing a uall: āˆ€[x:A]. B[x] all: āˆ€x:A. B[x] not: Ā¬A and: P āˆ§ Q apply: a function: x:A āŸ¶ B[x] natural_number: $n int: ā„¤ equal: t āˆˆ T
Definitions unfolded in proof :  uall: āˆ€[x:A]. B[x] member: t āˆˆ T uimplies: supposing a and: P āˆ§ Q nat: ā„• ge: i ā‰„  all: āˆ€x:A. B[x] decidable: Dec(P) or: P āˆØ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: āˆƒx:A. B[x] false: False implies: ā‡’ Q not: Ā¬A top: Top prop: ā„™ subtype_rel: A āŠ†B so_lambda: Ī»2x.t[x] so_apply: x[s] le: A ā‰¤ B less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ā‰¤ j < k cand: cāˆ§ B less_than: a < b
Lemmas referenced :  int_formula_prop_eq_lemma intformeq_wf decidable__equal_int not_wf all_wf assert_wf lelt_wf int_formula_prop_less_lemma intformless_wf decidable__lt subtype_rel_self false_wf int_seg_subtype_nat int_seg_wf nat_wf bool_wf subtype_rel_dep_function le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties mu-bound-unique
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination dependent_set_memberEquality addEquality setElimination rename hypothesisEquality natural_numberEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality because_Cache lambdaFormation productEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality independent_functionElimination

Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:\mBbbN{}].    mu(f)  =  x  supposing  (\muparrow{}(f  x))  \mwedge{}  (\mforall{}y:\mBbbN{}x.  (\mneg{}\muparrow{}(f  y)))



Date html generated: 2016_05_14-AM-07_30_08
Last ObjectModification: 2016_01_14-PM-09_58_12

Theory : int_2


Home Index