Nuprl Lemma : mu-unique
ā[f:ā ā¶ š¹]. ā[x:ā]. mu(f) = x ā ā¤ supposing (ā(f x)) ā§ (āy:āx. (Ā¬ā(f y)))
Proof
Definitions occuring in Statement :
mu: mu(f)
,
int_seg: {i..j-}
,
nat: ā
,
assert: āb
,
bool: š¹
,
uimplies: b supposing a
,
uall: ā[x:A]. B[x]
,
all: āx:A. B[x]
,
not: Ā¬A
,
and: P ā§ Q
,
apply: f a
,
function: x:A ā¶ B[x]
,
natural_number: $n
,
int: ā¤
,
equal: s = t ā T
Definitions unfolded in proof :
uall: ā[x:A]. B[x]
,
member: t ā T
,
uimplies: b supposing a
,
and: P ā§ Q
,
nat: ā
,
ge: i ā„ j
,
all: āx:A. B[x]
,
decidable: Dec(P)
,
or: P āØ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: āx:A. B[x]
,
false: False
,
implies: P
ā Q
,
not: Ā¬A
,
top: Top
,
prop: ā
,
subtype_rel: A ār B
,
so_lambda: Ī»2x.t[x]
,
so_apply: x[s]
,
le: A ā¤ B
,
less_than': less_than'(a;b)
,
int_seg: {i..j-}
,
lelt: i ā¤ j < k
,
cand: A cā§ B
,
less_than: a < b
Lemmas referenced :
int_formula_prop_eq_lemma,
intformeq_wf,
decidable__equal_int,
not_wf,
all_wf,
assert_wf,
lelt_wf,
int_formula_prop_less_lemma,
intformless_wf,
decidable__lt,
subtype_rel_self,
false_wf,
int_seg_subtype_nat,
int_seg_wf,
nat_wf,
bool_wf,
subtype_rel_dep_function,
le_wf,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
nat_properties,
mu-bound-unique
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
lemma_by_obid,
isectElimination,
dependent_set_memberEquality,
addEquality,
setElimination,
rename,
hypothesisEquality,
natural_numberEquality,
hypothesis,
dependent_functionElimination,
unionElimination,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
applyEquality,
because_Cache,
lambdaFormation,
productEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
independent_functionElimination
Latex:
\mforall{}[f:\mBbbN{} {}\mrightarrow{} \mBbbB{}]. \mforall{}[x:\mBbbN{}]. mu(f) = x supposing (\muparrow{}(f x)) \mwedge{} (\mforall{}y:\mBbbN{}x. (\mneg{}\muparrow{}(f y)))
Date html generated:
2016_05_14-AM-07_30_08
Last ObjectModification:
2016_01_14-PM-09_58_12
Theory : int_2
Home
Index