Nuprl Lemma : mu-unique

[f:ℕ ⟶ 𝔹]. ∀[x:ℕ].  mu(f) x ∈ ℤ supposing (↑(f x)) ∧ (∀y:ℕx. (¬↑(f y)))


Proof




Definitions occuring in Statement :  mu: mu(f) int_seg: {i..j-} nat: assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ≤ j < k cand: c∧ B less_than: a < b
Lemmas referenced :  int_formula_prop_eq_lemma intformeq_wf decidable__equal_int not_wf all_wf assert_wf lelt_wf int_formula_prop_less_lemma intformless_wf decidable__lt subtype_rel_self false_wf int_seg_subtype_nat int_seg_wf nat_wf bool_wf subtype_rel_dep_function le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties mu-bound-unique
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination dependent_set_memberEquality addEquality setElimination rename hypothesisEquality natural_numberEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality because_Cache lambdaFormation productEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality independent_functionElimination

Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:\mBbbN{}].    mu(f)  =  x  supposing  (\muparrow{}(f  x))  \mwedge{}  (\mforall{}y:\mBbbN{}x.  (\mneg{}\muparrow{}(f  y)))



Date html generated: 2016_05_14-AM-07_30_08
Last ObjectModification: 2016_01_14-PM-09_58_12

Theory : int_2


Home Index