Nuprl Lemma : isr-first-success

[T:Type]. ∀[A:T ⟶ Type]. ∀[f:x:T ⟶ (A[x]?)]. ∀[L:T List].  (↑isr(first-success(f;L)) ⇐⇒ (∀a∈L.↑isr(f a)))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) first-success: first-success(f;L) list: List assert: b isr: isr(x) uall: [x:A]. B[x] so_apply: x[s] iff: ⇐⇒ Q unit: Unit apply: a function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a all: x:A. B[x] top: Top int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T first-success: first-success(f;L) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] isr: isr(x) assert: b ifthenelse: if then else fi  bfalse: ff false: False btrue: tt unit: Unit cand: c∧ B true: True rev_implies:  Q list_ind: list_ind nil: [] it: subtype_rel: A ⊆B l_all: (∀x∈L.P[x])
Lemmas referenced :  list_induction assert_wf isr_wf select_wf l_all_wf l_member_wf list_wf l_all_nil int_seg_wf length_wf nil_wf sq_stable__le unit_wf2 first-success_wf list_ind_cons_lemma false_wf true_wf equal_wf l_all_cons l_all_wf_nil cons_wf assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality productEquality because_Cache applyEquality independent_isectElimination hypothesis cumulativity setElimination rename functionExtensionality setEquality independent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality productElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination unionEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry addLevel impliesFunctionality independent_pairEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  Type].  \mforall{}[f:x:T  {}\mrightarrow{}  (A[x]?)].  \mforall{}[L:T  List].
    (\muparrow{}isr(first-success(f;L))  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}a\mmember{}L.\muparrow{}isr(f  a)))



Date html generated: 2017_04_14-AM-08_41_00
Last ObjectModification: 2017_02_27-PM-03_31_43

Theory : list_0


Home Index