Nuprl Lemma : compat-iseg-cases
∀[T:Type]. ∀L1,L2:T List.  (L1 || L2 
⇐⇒ L1 < L2 ∨ L2 < L1 ∨ (L1 = L2 ∈ (T List)))
Proof
Definitions occuring in Statement : 
proper-iseg: L1 < L2
, 
compat: l1 || l2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
compat: l1 || l2
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
decidable: Dec(P)
, 
cand: A c∧ B
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
iseg_length, 
iseg_same_length, 
decidable__equal_int, 
compat_wf, 
iff_wf, 
proper-iseg_wf, 
proper-iseg-length, 
list_wf, 
equal_wf, 
length_wf, 
less_than_wf, 
and_wf, 
iseg_weakening, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
iseg_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
inlFormation, 
sqequalRule, 
inrFormation, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
addLevel, 
impliesFunctionality, 
orFunctionality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (L1  ||  L2  \mLeftarrow{}{}\mRightarrow{}  L1  <  L2  \mvee{}  L2  <  L1  \mvee{}  (L1  =  L2))
Date html generated:
2016_05_14-PM-03_05_06
Last ObjectModification:
2016_01_15-AM-07_21_51
Theory : list_1
Home
Index