Nuprl Lemma : int-seg-cardinality-le

x,y:ℤ. ∀n:ℕ.  |{x..y-}| ≤ supposing ((y x) ≤ n) ∧ x < y


Proof




Definitions occuring in Statement :  cardinality-le: |T| ≤ n int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a le: A ≤ B all: x:A. B[x] and: P ∧ Q subtract: m int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q le: A ≤ B not: ¬A implies:  Q false: False uall: [x:A]. B[x] nat: prop: rev_implies:  Q nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top guard: {T} cardinality-le: |T| ≤ n int_seg: {i..j-} uiff: uiff(P;Q) lelt: i ≤ j < k surject: Surj(A;B;f)
Lemmas referenced :  less_than'_wf subtract_wf member-less_than cardinality-le_functionality int_seg_wf nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf less_than_wf le_wf nat_wf add-member-int_seg1 decidable__le intformle_wf int_formula_prop_le_lemma lelt_wf surject_wf int_seg_properties decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination extract_by_obid isectElimination setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry independent_isectElimination dependent_set_memberEquality natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation productEquality because_Cache addEquality

Latex:
\mforall{}x,y:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    |\{x..y\msupminus{}\}|  \mleq{}  n  supposing  ((y  -  x)  \mleq{}  n)  \mwedge{}  x  <  y



Date html generated: 2018_05_21-PM-00_39_40
Last ObjectModification: 2018_05_19-AM-06_45_06

Theory : list_1


Home Index