Nuprl Lemma : int-seg-cardinality-le
∀x,y:ℤ. ∀n:ℕ.  |{x..y-}| ≤ n supposing ((y - x) ≤ n) ∧ x < y
Proof
Definitions occuring in Statement : 
cardinality-le: |T| ≤ n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
subtract: n - m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
and: P ∧ Q
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
guard: {T}
, 
cardinality-le: |T| ≤ n
, 
int_seg: {i..j-}
, 
uiff: uiff(P;Q)
, 
lelt: i ≤ j < k
, 
surject: Surj(A;B;f)
Lemmas referenced : 
less_than'_wf, 
subtract_wf, 
member-less_than, 
cardinality-le_functionality, 
int_seg_wf, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
less_than_wf, 
le_wf, 
nat_wf, 
add-member-int_seg1, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
lelt_wf, 
surject_wf, 
int_seg_properties, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
productEquality, 
because_Cache, 
addEquality
Latex:
\mforall{}x,y:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    |\{x..y\msupminus{}\}|  \mleq{}  n  supposing  ((y  -  x)  \mleq{}  n)  \mwedge{}  x  <  y
Date html generated:
2018_05_21-PM-00_39_40
Last ObjectModification:
2018_05_19-AM-06_45_06
Theory : list_1
Home
Index