Nuprl Lemma : l_all_from-upto

n,m:ℤ. ∀P:ℤ ⟶ ℙ.  ((∀x∈[n, m).P[x]) ⇐⇒ ∀x:ℤ((n ≤ x)  x <  P[x]))


Proof




Definitions occuring in Statement :  from-upto: [n, m) l_all: (∀x∈L.P[x]) less_than: a < b prop: so_apply: x[s] le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B rev_implies:  Q sq_stable: SqStable(P) uimplies: supposing a squash: T decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  all_wf set_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le squash_wf member-less_than sq_stable__less_than sq_stable__le sq_stable__and l_all_wf member-from-upto l_member_wf from-upto_wf less_than_wf le_wf and_wf l_all_iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality intEquality hypothesisEquality hypothesis dependent_functionElimination sqequalRule lambdaEquality applyEquality setElimination rename productElimination independent_functionElimination dependent_set_memberEquality isect_memberEquality introduction because_Cache independent_isectElimination imageMemberEquality baseClosed imageElimination unionElimination natural_numberEquality dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll functionEquality cumulativity universeEquality

Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}P:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}x\mmember{}[n,  m).P[x])  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:\mBbbZ{}.  ((n  \mleq{}  x)  {}\mRightarrow{}  x  <  m  {}\mRightarrow{}  P[x]))



Date html generated: 2016_05_14-PM-02_02_36
Last ObjectModification: 2016_01_15-AM-08_07_38

Theory : list_1


Home Index