Nuprl Lemma : l_all_from-upto
∀n,m:ℤ. ∀P:ℤ ⟶ ℙ.  ((∀x∈[n, m).P[x]) 
⇐⇒ ∀x:ℤ. ((n ≤ x) 
⇒ x < m 
⇒ P[x]))
Proof
Definitions occuring in Statement : 
from-upto: [n, m)
, 
l_all: (∀x∈L.P[x])
, 
less_than: a < b
, 
prop: ℙ
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
all_wf, 
set_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
squash_wf, 
member-less_than, 
sq_stable__less_than, 
sq_stable__le, 
sq_stable__and, 
l_all_wf, 
member-from-upto, 
l_member_wf, 
from-upto_wf, 
less_than_wf, 
le_wf, 
and_wf, 
l_all_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
intEquality, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
productElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
isect_memberEquality, 
introduction, 
because_Cache, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}P:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}x\mmember{}[n,  m).P[x])  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:\mBbbZ{}.  ((n  \mleq{}  x)  {}\mRightarrow{}  x  <  m  {}\mRightarrow{}  P[x]))
Date html generated:
2016_05_14-PM-02_02_36
Last ObjectModification:
2016_01_15-AM-08_07_38
Theory : list_1
Home
Index