Nuprl Lemma : l_sum-upper-bound

b:ℤ. ∀[L:ℤ List]. ((∀x∈L.x ≤ b)  (l_sum(L) ≤ (b ||L||)))


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) l_all: (∀x∈L.P[x]) length: ||as|| list: List uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q multiply: m int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] l_sum: l_sum(L) top: Top decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A subtype_rel: A ⊆B and: P ∧ Q le: A ≤ B uiff: uiff(P;Q) iff: ⇐⇒ Q
Lemmas referenced :  less_than'_wf cons_wf l_all_cons and_wf false_wf int_term_value_add_lemma int_formula_prop_and_lemma itermAdd_wf intformand_wf multiply-is-int-iff length_of_cons_lemma reduce_cons_lemma l_all_wf_nil int_formula_prop_wf int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermVar_wf itermMultiply_wf itermConstant_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le length_of_nil_lemma reduce_nil_lemma list_wf length_wf l_sum_wf l_member_wf le_wf l_all_wf list_induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut thin lemma_by_obid sqequalHypSubstitution isectElimination intEquality sqequalRule lambdaEquality functionEquality hypothesisEquality setElimination rename hypothesis setEquality multiplyEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality computeAll applyEquality productElimination addEquality pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion baseClosed independent_pairFormation addLevel impliesFunctionality because_Cache independent_pairEquality axiomEquality

Latex:
\mforall{}b:\mBbbZ{}.  \mforall{}[L:\mBbbZ{}  List].  ((\mforall{}x\mmember{}L.x  \mleq{}  b)  {}\mRightarrow{}  (l\_sum(L)  \mleq{}  (b  *  ||L||)))



Date html generated: 2016_05_14-PM-02_51_30
Last ObjectModification: 2016_01_15-AM-07_31_20

Theory : list_1


Home Index