Nuprl Lemma : l_sum-upper-bound
∀b:ℤ. ∀[L:ℤ List]. ((∀x∈L.x ≤ b) 
⇒ (l_sum(L) ≤ (b * ||L||)))
Proof
Definitions occuring in Statement : 
l_sum: l_sum(L)
, 
l_all: (∀x∈L.P[x])
, 
length: ||as||
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
l_sum: l_sum(L)
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
less_than'_wf, 
cons_wf, 
l_all_cons, 
and_wf, 
false_wf, 
int_term_value_add_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
intformand_wf, 
multiply-is-int-iff, 
length_of_cons_lemma, 
reduce_cons_lemma, 
l_all_wf_nil, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
length_of_nil_lemma, 
reduce_nil_lemma, 
list_wf, 
length_wf, 
l_sum_wf, 
l_member_wf, 
le_wf, 
l_all_wf, 
list_induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
multiplyEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
applyEquality, 
productElimination, 
addEquality, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_pairFormation, 
addLevel, 
impliesFunctionality, 
because_Cache, 
independent_pairEquality, 
axiomEquality
Latex:
\mforall{}b:\mBbbZ{}.  \mforall{}[L:\mBbbZ{}  List].  ((\mforall{}x\mmember{}L.x  \mleq{}  b)  {}\mRightarrow{}  (l\_sum(L)  \mleq{}  (b  *  ||L||)))
Date html generated:
2016_05_14-PM-02_51_30
Last ObjectModification:
2016_01_15-AM-07_31_20
Theory : list_1
Home
Index