Nuprl Lemma : list-max-imax-list
∀[T:Type]. ∀[f:T ⟶ ℤ]. ∀[L:T List].  (fst(list-max(x.f[x];L))) = imax-list(map(λx.f[x];L)) ∈ ℤ supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
list-max: list-max(x.f[x];L)
, 
imax-list: imax-list(L)
, 
length: ||as||
, 
map: map(f;as)
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
pi1: fst(t)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
list-max-property, 
list-max_wf, 
equal-wf-T-base, 
int_subtype_base, 
l_member_wf, 
l_all_wf, 
le_wf, 
equal_wf, 
less_than_wf, 
length_wf, 
list_wf, 
imax-list-unique, 
map_wf, 
member_map, 
equal-wf-base-T, 
l_all_iff, 
subtype_base_sq
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
independent_isectElimination, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
productEquality, 
intEquality, 
setEquality, 
lambdaFormation, 
productElimination, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
natural_numberEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
universeEquality, 
dependent_pairFormation, 
independent_pairFormation, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List].
    (fst(list-max(x.f[x];L)))  =  imax-list(map(\mlambda{}x.f[x];L))  supposing  0  <  ||L||
Date html generated:
2017_04_17-AM-07_40_59
Last ObjectModification:
2017_02_27-PM-04_14_03
Theory : list_1
Home
Index