Nuprl Lemma : list-max-imax-list

[T:Type]. ∀[f:T ⟶ ℤ]. ∀[L:T List].  (fst(list-max(x.f[x];L))) imax-list(map(λx.f[x];L)) ∈ ℤ supposing 0 < ||L||


Proof




Definitions occuring in Statement :  list-max: list-max(x.f[x];L) imax-list: imax-list(L) length: ||as|| map: map(f;as) list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] prop: subtype_rel: A ⊆B implies:  Q pi1: fst(t) and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] uiff: uiff(P;Q) sq_type: SQType(T) guard: {T}
Lemmas referenced :  list-max-property list-max_wf equal-wf-T-base int_subtype_base l_member_wf l_all_wf le_wf equal_wf less_than_wf length_wf list_wf imax-list-unique map_wf member_map equal-wf-base-T l_all_iff subtype_base_sq
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination independent_isectElimination cumulativity sqequalRule lambdaEquality applyEquality functionExtensionality productEquality intEquality setEquality lambdaFormation productElimination setElimination rename equalityTransitivity equalitySymmetry independent_functionElimination natural_numberEquality isect_memberEquality axiomEquality because_Cache universeEquality dependent_pairFormation independent_pairFormation instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List].
    (fst(list-max(x.f[x];L)))  =  imax-list(map(\mlambda{}x.f[x];L))  supposing  0  <  ||L||



Date html generated: 2017_04_17-AM-07_40_59
Last ObjectModification: 2017_02_27-PM-04_14_03

Theory : list_1


Home Index