Nuprl Lemma : list_decomp_rev_wf
∀[T:Type]. ∀[l:T List].  list_decomp_rev{i:l}(l) ∈ {p:T × (T List)| l = ((snd(p)) @ [fst(p)]) ∈ (T List)}  supposing 0 <\000C ||l||
Proof
Definitions occuring in Statement : 
list_decomp_rev: list_decomp_rev{i:l}(l), 
length: ||as||, 
append: as @ bs, 
cons: [a / b], 
nil: [], 
list: T List, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
pi2: snd(t), 
member: t ∈ T, 
set: {x:A| B[x]} , 
product: x:A × B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
list_decomp_rev: list_decomp_rev{i:l}(l), 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
pi2: snd(t), 
pi1: fst(t), 
and: P ∧ Q, 
squash: ↓T, 
true: True
Lemmas referenced : 
list_decomp_reverse, 
uall_wf, 
all_wf, 
list_wf, 
isect_wf, 
less_than_wf, 
length_wf, 
exists_wf, 
equal_wf, 
append_wf, 
cons_wf, 
nil_wf, 
uimplies_subtype, 
and_wf, 
squash_wf, 
true_wf, 
pi2_wf, 
pi1_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
natural_numberEquality, 
because_Cache, 
applyEquality, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
functionEquality, 
independent_isectElimination, 
productElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
rename, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_pairEquality, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    list\_decomp\_rev\{i:l\}(l)  \mmember{}  \{p:T  \mtimes{}  (T  List)|  l  =  ((snd(p))  @  [fst(p)])\}    supp\000Cosing  0  <  ||l||
Date html generated:
2017_04_17-AM-08_43_26
Last ObjectModification:
2017_02_27-PM-05_02_27
Theory : list_1
Home
Index